Normalized defining polynomial
\( x^{8} + 12x^{6} - 24x^{5} + x^{4} + 172x^{3} - 66x^{2} - 212x + 405 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(2552632508416\)
\(\medspace = 2^{16}\cdot 79^{4}\)
|
| |
| Root discriminant: | \(35.55\) |
| |
| Galois root discriminant: | $2^{2}79^{1/2}\approx 35.552777669262355$ | ||
| Ramified primes: |
\(2\), \(79\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{44563511}a^{7}-\frac{4722191}{44563511}a^{6}-\frac{2865286}{44563511}a^{5}+\frac{9988271}{44563511}a^{4}-\frac{13180739}{44563511}a^{3}+\frac{22138599}{44563511}a^{2}+\frac{6155711}{44563511}a-\frac{21365801}{44563511}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ |
| |
| Narrow class group: | $C_{6}$, which has order $6$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{360608}{44563511}a^{7}+\frac{1030204}{44563511}a^{6}+\frac{4512158}{44563511}a^{5}+\frac{4652193}{44563511}a^{4}-\frac{24973074}{44563511}a^{3}+\frac{70293608}{44563511}a^{2}+\frac{90149378}{44563511}a-\frac{48786707}{44563511}$, $\frac{842171}{44563511}a^{7}-\frac{31510}{44563511}a^{6}+\frac{8781233}{44563511}a^{5}-\frac{20723530}{44563511}a^{4}-\frac{22062357}{44563511}a^{3}+\frac{138016782}{44563511}a^{2}-\frac{1073071}{44563511}a-\frac{338284523}{44563511}$, $\frac{643031}{44563511}a^{7}-\frac{2124892}{44563511}a^{6}+\frac{10640429}{44563511}a^{5}-\frac{37260496}{44563511}a^{4}+\frac{88631225}{44563511}a^{3}-\frac{97262403}{44563511}a^{2}+\frac{48262488}{44563511}a+\frac{13494958}{44563511}$
|
| |
| Regulator: | \( 397.36387679 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 397.36387679 \cdot 6}{2\cdot\sqrt{2552632508416}}\cr\approx \mathstrut & 1.1628801689 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| \(\Q(\sqrt{79}) \), 4.0.5056.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.0.5056.2 |
| Degree 6 siblings: | 6.2.1597696.3, 6.2.504871936.4 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.0.5056.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.16b1.4 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 45 x^{4} + 48 x^{3} + 44 x^{2} + 24 x + 13$ | $4$ | $2$ | $16$ | $D_4$ | $$[2, 3]^{2}$$ |
|
\(79\)
| 79.2.2.2a1.2 | $x^{4} + 156 x^{3} + 6090 x^{2} + 468 x + 88$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 79.2.2.2a1.2 | $x^{4} + 156 x^{3} + 6090 x^{2} + 468 x + 88$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |