Normalized defining polynomial
\( x^{8} - 2x^{7} - 46x^{6} - 126x^{5} + 506x^{4} + 4150x^{3} + 13066x^{2} + 21486x + 16867 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(248669678479753216\)
\(\medspace = 2^{14}\cdot 7^{4}\cdot 43^{6}\)
|
| |
| Root discriminant: | \(149.44\) |
| |
| Galois root discriminant: | $2^{7/4}7^{1/2}43^{6/7}\approx 223.5976997666865$ | ||
| Ramified primes: |
\(2\), \(7\), \(43\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{43}a^{5}-\frac{21}{43}a^{4}-\frac{11}{43}a^{3}-\frac{17}{43}a^{2}+\frac{15}{43}a-\frac{8}{43}$, $\frac{1}{301}a^{6}-\frac{1}{301}a^{5}+\frac{6}{43}a^{4}+\frac{107}{301}a^{3}-\frac{24}{301}a^{2}+\frac{34}{301}a-\frac{117}{301}$, $\frac{1}{301}a^{7}-\frac{1}{301}a^{5}+\frac{128}{301}a^{4}-\frac{57}{301}a^{3}+\frac{122}{301}a^{2}-\frac{111}{301}a-\frac{82}{301}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{8}$, which has order $16$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{8}$, which has order $16$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{33}{301}a^{7}-\frac{65}{43}a^{6}+\frac{639}{301}a^{5}+\frac{7647}{301}a^{4}+\frac{14471}{301}a^{3}-\frac{94695}{301}a^{2}-\frac{332229}{301}a-\frac{754576}{301}$, $\frac{4961}{7}a^{7}-\frac{1019990}{301}a^{6}-\frac{7453123}{301}a^{5}-\frac{3267457}{301}a^{4}+\frac{130091679}{301}a^{3}+\frac{514379206}{301}a^{2}+\frac{1076881215}{301}a+\frac{788063526}{301}$, $\frac{7281084}{301}a^{7}-\frac{14635242}{301}a^{6}-\frac{36673446}{43}a^{5}-\frac{579550365}{301}a^{4}+\frac{2121947292}{301}a^{3}+\frac{13438747596}{301}a^{2}+\frac{33125772398}{301}a+\frac{4875702348}{43}$
|
| |
| Regulator: | \( 61441.8533723 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 61441.8533723 \cdot 16}{2\cdot\sqrt{248669678479753216}}\cr\approx \mathstrut & 1.53625161190 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 56 |
| The 8 conjugacy class representatives for $C_2^3:C_7$ |
| Character table for $C_2^3:C_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 14 sibling: | deg 14 |
| Degree 28 sibling: | deg 28 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | R | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.14a3.1 | $x^{8} + 2 x^{7} + 2 x^{4} + 2$ | $8$ | $1$ | $14$ | $C_2^3:C_7$ | $$[2, 2, 2]^{7}$$ |
|
\(7\)
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 7.1.2.1a1.2 | $x^{2} + 21$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(43\)
| $\Q_{43}$ | $x + 40$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 43.1.7.6a1.1 | $x^{7} + 43$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |