Normalized defining polynomial
\( x^{8} - 2x^{7} + 58x^{6} + 360x^{5} + 888x^{4} + 428x^{3} + 7960x^{2} - 13984x + 7226 \)
Invariants
Degree: | $8$ |
| |
Signature: | $[0, 4]$ |
| |
Discriminant: |
\(248669678479753216\)
\(\medspace = 2^{14}\cdot 7^{4}\cdot 43^{6}\)
|
| |
Root discriminant: | \(149.44\) |
| |
Galois root discriminant: | $2^{7/4}7^{1/2}43^{6/7}\approx 223.5976997666865$ | ||
Ramified primes: |
\(2\), \(7\), \(43\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5004550054349}a^{7}+\frac{761276254266}{5004550054349}a^{6}-\frac{2375242835212}{5004550054349}a^{5}+\frac{1260646864656}{5004550054349}a^{4}+\frac{1682220098885}{5004550054349}a^{3}+\frac{1286315688354}{5004550054349}a^{2}-\frac{1838979245220}{5004550054349}a+\frac{560732642010}{5004550054349}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
| |
Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
Rank: | $3$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{223129423852}{5004550054349}a^{7}-\frac{795838475818}{5004550054349}a^{6}+\frac{2529661633618}{5004550054349}a^{5}+\frac{40086691696648}{5004550054349}a^{4}+\frac{141730715548568}{5004550054349}a^{3}+\frac{51696046710146}{5004550054349}a^{2}+\frac{12\cdots 32}{5004550054349}a-\frac{10\cdots 15}{5004550054349}$, $\frac{17\cdots 41}{5004550054349}a^{7}-\frac{11\cdots 29}{5004550054349}a^{6}+\frac{14\cdots 12}{5004550054349}a^{5}+\frac{10\cdots 44}{5004550054349}a^{4}+\frac{12\cdots 02}{5004550054349}a^{3}+\frac{25\cdots 00}{5004550054349}a^{2}-\frac{42\cdots 80}{5004550054349}a+\frac{21\cdots 27}{5004550054349}$, $\frac{10\cdots 64}{5004550054349}a^{7}+\frac{51\cdots 20}{5004550054349}a^{6}+\frac{45\cdots 50}{5004550054349}a^{5}+\frac{33\cdots 50}{5004550054349}a^{4}+\frac{70\cdots 48}{5004550054349}a^{3}-\frac{14\cdots 90}{5004550054349}a^{2}+\frac{64\cdots 36}{5004550054349}a+\frac{10\cdots 25}{5004550054349}$
|
| |
Regulator: | \( 87970.1931263 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 87970.1931263 \cdot 8}{2\cdot\sqrt{248669678479753216}}\cr\approx \mathstrut & 1.09977436854 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 56 |
The 8 conjugacy class representatives for $C_2^3:C_7$ |
Character table for $C_2^3:C_7$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 14 sibling: | deg 14 |
Degree 28 sibling: | deg 28 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | R | ${\href{/padicField/11.7.0.1}{7} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.7.0.1}{7} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.1.0.1}{1} }^{8}$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | R | ${\href{/padicField/47.7.0.1}{7} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.7.0.1}{7} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.8.14a2.1 | $x^{8} + 2 x^{7} + 2 x^{6} + 2$ | $8$ | $1$ | $14$ | $C_2^3:C_7$ | $$[2, 2, 2]^{7}$$ |
\(7\)
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
\(43\)
| $\Q_{43}$ | $x + 40$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
43.1.7.6a1.1 | $x^{7} + 43$ | $7$ | $1$ | $6$ | $C_7$ | $$[\ ]_{7}$$ |