Normalized defining polynomial
\( x^{8} - 4x^{7} + 28x^{6} - 70x^{5} + 215x^{4} - 318x^{3} + 512x^{2} - 364x + 199 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(23157345835264\)
\(\medspace = 2^{8}\cdot 67^{6}\)
|
| |
| Root discriminant: | \(46.84\) |
| |
| Galois root discriminant: | $2^{7/6}67^{3/4}\approx 52.57239516295711$ | ||
| Ramified primes: |
\(2\), \(67\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-67}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{11}a^{6}-\frac{3}{11}a^{5}-\frac{4}{11}a^{4}+\frac{2}{11}a^{3}+\frac{3}{11}a^{2}+\frac{1}{11}a-\frac{3}{11}$, $\frac{1}{1903}a^{7}+\frac{83}{1903}a^{6}+\frac{156}{1903}a^{5}+\frac{527}{1903}a^{4}+\frac{219}{1903}a^{3}+\frac{743}{1903}a^{2}+\frac{105}{1903}a-\frac{225}{1903}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{11}a^{6}-\frac{3}{11}a^{5}+\frac{18}{11}a^{4}-\frac{31}{11}a^{3}+\frac{47}{11}a^{2}-\frac{32}{11}a-\frac{25}{11}$, $\frac{2515}{1903}a^{7}-\frac{8024}{1903}a^{6}+\frac{53087}{1903}a^{5}-\frac{106343}{1903}a^{4}+\frac{244748}{1903}a^{3}-\frac{26777}{173}a^{2}+\frac{214770}{1903}a-\frac{73517}{1903}$, $\frac{162}{173}a^{7}-\frac{567}{173}a^{6}+\frac{3647}{173}a^{5}-\frac{7700}{173}a^{4}+\frac{18005}{173}a^{3}-\frac{19591}{173}a^{2}+\frac{13550}{173}a-\frac{3753}{173}$
|
| |
| Regulator: | \( 1803.33818217 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 1803.33818217 \cdot 1}{2\cdot\sqrt{23157345835264}}\cr\approx \mathstrut & 0.292026501185 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| \(\Q(\sqrt{-67}) \), 4.2.4812208.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.2.4812208.1 |
| Degree 6 siblings: | 6.0.19248832.1, 6.2.1289671744.2 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.2.4812208.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.8a1.1 | $x^{8} + 4 x^{7} + 10 x^{6} + 16 x^{5} + 19 x^{4} + 16 x^{3} + 12 x^{2} + 6 x + 5$ | $4$ | $2$ | $8$ | $S_4$ | $$[\frac{4}{3}, \frac{4}{3}]_{3}^{2}$$ |
|
\(67\)
| 67.2.4.6a1.2 | $x^{8} + 252 x^{7} + 23822 x^{6} + 1001700 x^{5} + 15848241 x^{4} + 2003400 x^{3} + 95288 x^{2} + 2016 x + 83$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |