Normalized defining polynomial
\( x^{8} + 80x^{6} + 1660x^{4} + 6400x^{2} + 2900 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(1598357504000000\)
\(\medspace = 2^{22}\cdot 5^{6}\cdot 29^{3}\)
|
| |
| Root discriminant: | \(79.52\) |
| |
| Galois root discriminant: | $2^{11/4}5^{3/4}29^{1/2}\approx 121.1320285604979$ | ||
| Ramified primes: |
\(2\), \(5\), \(29\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{29}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | deg 16$^{8}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{40}a^{4}-\frac{1}{2}a^{2}+\frac{1}{4}$, $\frac{1}{40}a^{5}-\frac{1}{2}a^{3}+\frac{1}{4}a$, $\frac{1}{11800}a^{6}+\frac{17}{2360}a^{4}-\frac{57}{1180}a^{2}-\frac{47}{236}$, $\frac{1}{11800}a^{7}+\frac{17}{2360}a^{5}-\frac{57}{1180}a^{3}-\frac{47}{236}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{132}$, which has order $528$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{132}$, which has order $528$ (assuming GRH) |
| |
| Relative class number: | $264$ (assuming GRH) |
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{2360}a^{6}+\frac{17}{472}a^{4}+\frac{179}{236}a^{2}+\frac{237}{236}$, $\frac{19}{5900}a^{6}+\frac{587}{2360}a^{4}+\frac{1376}{295}a^{2}+\frac{1931}{236}$, $\frac{11}{11800}a^{6}+\frac{187}{2360}a^{4}+\frac{1733}{1180}a^{2}+\frac{191}{236}$
|
| |
| Regulator: | \( 52.2683814915 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 52.2683814915 \cdot 528}{2\cdot\sqrt{1598357504000000}}\cr\approx \mathstrut & 0.537929659496 \end{aligned}\] (assuming GRH)
Galois group
$\SD_{16}$ (as 8T8):
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.46400.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 16 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }$ | ${\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/31.2.0.1}{2} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.22a1.72 | $x^{8} + 12 x^{7} + 42 x^{6} + 88 x^{5} + 127 x^{4} + 128 x^{3} + 102 x^{2} + 76 x + 23$ | $4$ | $2$ | $22$ | $C_8$ | $$[3, 4]^{2}$$ |
|
\(5\)
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
| 5.1.4.3a1.1 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ | |
|
\(29\)
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{29}$ | $x + 27$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.1.2.1a1.1 | $x^{2} + 29$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |