Normalized defining polynomial
\( x^{8} - x^{7} - x^{6} + 29x^{5} + 81x^{4} + 146x^{3} + 379x^{2} + 766x + 696 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(11123564735349\)
\(\medspace = 3^{3}\cdot 11^{2}\cdot 23^{7}\)
|
| |
| Root discriminant: | \(42.73\) |
| |
| Galois root discriminant: | $3^{1/2}11^{1/2}23^{7/8}\approx 89.28301066505563$ | ||
| Ramified primes: |
\(3\), \(11\), \(23\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{69}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-23}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5}a^{4}+\frac{2}{5}a^{3}+\frac{2}{5}a-\frac{1}{5}$, $\frac{1}{5}a^{5}+\frac{1}{5}a^{3}+\frac{2}{5}a^{2}+\frac{2}{5}$, $\frac{1}{10}a^{6}-\frac{1}{10}a^{4}-\frac{1}{5}a^{3}-\frac{1}{2}a^{2}+\frac{3}{10}a+\frac{1}{5}$, $\frac{1}{69990}a^{7}+\frac{247}{6999}a^{6}+\frac{241}{69990}a^{5}-\frac{3187}{34995}a^{4}+\frac{25673}{69990}a^{3}-\frac{9601}{23330}a^{2}-\frac{3001}{34995}a-\frac{1049}{11665}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ (assuming GRH) |
| |
| Narrow class group: | $C_{6}$, which has order $6$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{7707}{11665}a^{7}-\frac{21987}{11665}a^{6}+\frac{5663}{2333}a^{5}+\frac{178871}{11665}a^{4}+\frac{273042}{11665}a^{3}+\frac{124628}{2333}a^{2}+\frac{1723064}{11665}a+\frac{2783147}{11665}$, $\frac{76253}{34995}a^{7}-\frac{201151}{34995}a^{6}+\frac{19117}{6999}a^{5}+\frac{2591564}{34995}a^{4}+\frac{1289788}{34995}a^{3}+\frac{285495}{2333}a^{2}+\frac{22726856}{34995}a+\frac{690971}{2333}$, $\frac{17104}{34995}a^{7}-\frac{33412}{6999}a^{6}+\frac{118636}{34995}a^{5}+\frac{128509}{34995}a^{4}+\frac{119714}{34995}a^{3}-\frac{4659301}{11665}a^{2}-\frac{29448668}{34995}a-\frac{12248569}{11665}$
|
| |
| Regulator: | \( 8679.56107741 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 8679.56107741 \cdot 6}{2\cdot\sqrt{11123564735349}}\cr\approx \mathstrut & 12.1679242794 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $(C_4^2 : C_2):C_2$ |
| Character table for $(C_4^2 : C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 4.0.36501.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 8.0.11123564735349.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }{,}\,{\href{/padicField/2.1.0.1}{1} }^{4}$ | R | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.8.0.1}{8} }$ | R | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }$ | R | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }$ | ${\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(11\)
| 11.2.2.2a1.1 | $x^{4} + 14 x^{3} + 53 x^{2} + 39 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |
| 11.4.1.0a1.1 | $x^{4} + 8 x^{2} + 10 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(23\)
| 23.1.8.7a1.1 | $x^{8} + 23$ | $8$ | $1$ | $7$ | $D_{8}$ | $$[\ ]_{8}^{2}$$ |