Normalized defining polynomial
\( x^{7} - 3x^{6} + 34x^{5} + 669x^{4} + 2818x^{3} + 5949x^{2} + 8193x + 6048 \)
Invariants
| Degree: | $7$ |
| |
| Signature: | $[1, 3]$ |
| |
| Discriminant: |
\(-2382640370084547\)
\(\medspace = -\,3^{3}\cdot 211^{6}\)
|
| |
| Root discriminant: | \(157.30\) |
| |
| Galois root discriminant: | $3^{1/2}211^{6/7}\approx 170.1385518318596$ | ||
| Ramified primes: |
\(3\), \(211\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{56}a^{5}-\frac{1}{7}a^{4}-\frac{1}{8}a^{3}+\frac{1}{7}a^{2}-\frac{15}{56}a$, $\frac{1}{117096}a^{6}-\frac{129}{19516}a^{5}+\frac{25945}{117096}a^{4}+\frac{3415}{19516}a^{3}+\frac{1625}{6888}a^{2}+\frac{3091}{19516}a+\frac{57}{697}$
| Monogenic: | No | |
| Index: | $24$ | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | $C_{7}$, which has order $7$ |
| |
| Narrow class group: | $C_{7}$, which has order $7$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{28507589377}{117096}a^{6}-\frac{50708802079}{39032}a^{5}+\frac{200632618999}{16728}a^{4}+\frac{5112948727829}{39032}a^{3}+\frac{2952020416949}{6888}a^{2}+\frac{4059164340723}{5576}a+\frac{394144361617}{697}$, $\frac{584918526653}{117096}a^{6}-\frac{992401566515}{39032}a^{5}+\frac{3725085167519}{16728}a^{4}+\frac{112095736196985}{39032}a^{3}+\frac{55757653626505}{6888}a^{2}+\frac{69010833275763}{5576}a+\frac{7730858821715}{697}$, $\frac{789381}{19516}a^{6}-\frac{1931613}{9758}a^{5}+\frac{36802561}{19516}a^{4}+\frac{223431305}{9758}a^{3}+\frac{86942225}{1148}a^{2}+\frac{1784199885}{9758}a+\frac{161881027}{697}$
|
| |
| Regulator: | \( 449592.201473 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{3}\cdot 449592.201473 \cdot 7}{2\cdot\sqrt{2382640370084547}}\cr\approx \mathstrut & 15.9928979694 \end{aligned}\]
Galois group
| A solvable group of order 14 |
| The 5 conjugacy class representatives for $D_{7}$ |
| Character table for $D_{7}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | deg 14 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{3}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | R | ${\href{/padicField/5.2.0.1}{2} }^{3}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.1.0.1}{1} }^{7}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.7.0.1}{7} }$ | ${\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.7.0.1}{7} }$ | ${\href{/padicField/37.7.0.1}{7} }$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.7.0.1}{7} }$ | ${\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(211\)
| Deg $7$ | $7$ | $1$ | $6$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *14 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| *14 | 2.133563.7t2.a.c | $2$ | $ 3 \cdot 211^{2}$ | 7.1.2382640370084547.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
| *14 | 2.133563.7t2.a.a | $2$ | $ 3 \cdot 211^{2}$ | 7.1.2382640370084547.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |
| *14 | 2.133563.7t2.a.b | $2$ | $ 3 \cdot 211^{2}$ | 7.1.2382640370084547.1 | $D_{7}$ (as 7T2) | $1$ | $0$ |