Properties

Label 7.1.2382640370084547.1
Degree $7$
Signature $[1, 3]$
Discriminant $-2.383\times 10^{15}$
Root discriminant \(157.30\)
Ramified primes $3,211$
Class number $7$
Class group [7]
Galois group $D_{7}$ (as 7T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^7 - 3*x^6 + 34*x^5 + 669*x^4 + 2818*x^3 + 5949*x^2 + 8193*x + 6048)
 
Copy content gp:K = bnfinit(y^7 - 3*y^6 + 34*y^5 + 669*y^4 + 2818*y^3 + 5949*y^2 + 8193*y + 6048, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^7 - 3*x^6 + 34*x^5 + 669*x^4 + 2818*x^3 + 5949*x^2 + 8193*x + 6048);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^7 - 3*x^6 + 34*x^5 + 669*x^4 + 2818*x^3 + 5949*x^2 + 8193*x + 6048)
 

\( x^{7} - 3x^{6} + 34x^{5} + 669x^{4} + 2818x^{3} + 5949x^{2} + 8193x + 6048 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $7$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[1, 3]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-2382640370084547\) \(\medspace = -\,3^{3}\cdot 211^{6}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(157.30\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}211^{6/7}\approx 170.1385518318596$
Ramified primes:   \(3\), \(211\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-3}) \)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{56}a^{5}-\frac{1}{7}a^{4}-\frac{1}{8}a^{3}+\frac{1}{7}a^{2}-\frac{15}{56}a$, $\frac{1}{117096}a^{6}-\frac{129}{19516}a^{5}+\frac{25945}{117096}a^{4}+\frac{3415}{19516}a^{3}+\frac{1625}{6888}a^{2}+\frac{3091}{19516}a+\frac{57}{697}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  $24$
Inessential primes:  $2$, $3$

Class group and class number

Ideal class group:  $C_{7}$, which has order $7$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{7}$, which has order $7$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $3$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{28507589377}{117096}a^{6}-\frac{50708802079}{39032}a^{5}+\frac{200632618999}{16728}a^{4}+\frac{5112948727829}{39032}a^{3}+\frac{2952020416949}{6888}a^{2}+\frac{4059164340723}{5576}a+\frac{394144361617}{697}$, $\frac{584918526653}{117096}a^{6}-\frac{992401566515}{39032}a^{5}+\frac{3725085167519}{16728}a^{4}+\frac{112095736196985}{39032}a^{3}+\frac{55757653626505}{6888}a^{2}+\frac{69010833275763}{5576}a+\frac{7730858821715}{697}$, $\frac{789381}{19516}a^{6}-\frac{1931613}{9758}a^{5}+\frac{36802561}{19516}a^{4}+\frac{223431305}{9758}a^{3}+\frac{86942225}{1148}a^{2}+\frac{1784199885}{9758}a+\frac{161881027}{697}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 449592.201473 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{3}\cdot 449592.201473 \cdot 7}{2\cdot\sqrt{2382640370084547}}\cr\approx \mathstrut & 15.9928979694 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^7 - 3*x^6 + 34*x^5 + 669*x^4 + 2818*x^3 + 5949*x^2 + 8193*x + 6048) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^7 - 3*x^6 + 34*x^5 + 669*x^4 + 2818*x^3 + 5949*x^2 + 8193*x + 6048, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^7 - 3*x^6 + 34*x^5 + 669*x^4 + 2818*x^3 + 5949*x^2 + 8193*x + 6048); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^7 - 3*x^6 + 34*x^5 + 669*x^4 + 2818*x^3 + 5949*x^2 + 8193*x + 6048); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_7$ (as 7T2):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 14
The 5 conjugacy class representatives for $D_{7}$
Character table for $D_{7}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 14
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.2.0.1}{2} }^{3}{,}\,{\href{/padicField/2.1.0.1}{1} }$ R ${\href{/padicField/5.2.0.1}{2} }^{3}{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.1.0.1}{1} }^{7}$ ${\href{/padicField/11.2.0.1}{2} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.7.0.1}{7} }$ ${\href{/padicField/17.2.0.1}{2} }^{3}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.7.0.1}{7} }$ ${\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.2.0.1}{2} }^{3}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.7.0.1}{7} }$ ${\href{/padicField/37.7.0.1}{7} }$ ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.7.0.1}{7} }$ ${\href{/padicField/47.2.0.1}{2} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.2.0.1}{2} }^{3}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$$[\ ]$$
3.1.2.1a1.1$x^{2} + 3$$2$$1$$1$$C_2$$$[\ ]_{2}$$
3.1.2.1a1.1$x^{2} + 3$$2$$1$$1$$C_2$$$[\ ]_{2}$$
3.1.2.1a1.1$x^{2} + 3$$2$$1$$1$$C_2$$$[\ ]_{2}$$
\(211\) Copy content Toggle raw display Deg $7$$7$$1$$6$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
*14 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
*14 2.133563.7t2.a.c$2$ $ 3 \cdot 211^{2}$ 7.1.2382640370084547.1 $D_{7}$ (as 7T2) $1$ $0$
*14 2.133563.7t2.a.a$2$ $ 3 \cdot 211^{2}$ 7.1.2382640370084547.1 $D_{7}$ (as 7T2) $1$ $0$
*14 2.133563.7t2.a.b$2$ $ 3 \cdot 211^{2}$ 7.1.2382640370084547.1 $D_{7}$ (as 7T2) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)