Show commands:
Magma
magma: G := TransitiveGroup(7, 2);
Group action invariants
Degree $n$: | $7$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $2$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{7}$ | ||
CHM label: | $D(7) = 7:2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,6)(2,5)(3,4), (1,2,3,4,5,6,7) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
14T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 1 $ | $7$ | $2$ | $(2,7)(3,6)(4,5)$ |
$ 7 $ | $2$ | $7$ | $(1,2,3,4,5,6,7)$ |
$ 7 $ | $2$ | $7$ | $(1,3,5,7,2,4,6)$ |
$ 7 $ | $2$ | $7$ | $(1,4,7,3,6,2,5)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $14=2 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 14.1 | magma: IdentifyGroup(G);
|
Character table: |
2 1 1 . . . 7 1 . 1 1 1 1a 2a 7a 7b 7c 2P 1a 1a 7b 7c 7a 3P 1a 2a 7c 7a 7b 5P 1a 2a 7b 7c 7a 7P 1a 2a 1a 1a 1a X.1 1 1 1 1 1 X.2 1 -1 1 1 1 X.3 2 . A B C X.4 2 . B C A X.5 2 . C A B A = E(7)+E(7)^6 B = E(7)^2+E(7)^5 C = E(7)^3+E(7)^4 |
magma: CharacterTable(G);