Show commands:
Magma
magma: G := TransitiveGroup(7, 2);
Group action invariants
Degree $n$: | $7$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $2$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{7}$ | ||
CHM label: | $D(7) = 7:2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,6)(2,5)(3,4), (1,2,3,4,5,6,7) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
14T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{7}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{3},1$ | $7$ | $2$ | $3$ | $(2,7)(3,6)(4,5)$ |
7A1 | $7$ | $2$ | $7$ | $6$ | $(1,6,4,2,7,5,3)$ |
7A2 | $7$ | $2$ | $7$ | $6$ | $(1,5,2,6,3,7,4)$ |
7A3 | $7$ | $2$ | $7$ | $6$ | $(1,2,3,4,5,6,7)$ |
Malle's constant $a(G)$: $1/3$
magma: ConjugacyClasses(G);
Group invariants
Order: | $14=2 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 14.1 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 7A1 | 7A2 | 7A3 | ||
Size | 1 | 7 | 2 | 2 | 2 | |
2 P | 1A | 1A | 7A1 | 7A2 | 7A3 | |
7 P | 1A | 2A | 7A2 | 7A3 | 7A1 | |
Type | ||||||
14.1.1a | R | |||||
14.1.1b | R | |||||
14.1.2a1 | R | |||||
14.1.2a2 | R | |||||
14.1.2a3 | R |
magma: CharacterTable(G);