Show commands: Magma
Group invariants
| Abstract group: | $D_{7}$ |
| |
| Order: | $14=2 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $7$ |
| |
| Transitive number $t$: | $2$ |
| |
| CHM label: | $D(7) = 7:2$ | ||
| Parity: | $-1$ |
| |
| Primitive: | yes |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,6)(2,5)(3,4)$, $(1,2,3,4,5,6,7)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
14T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{7}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{3},1$ | $7$ | $2$ | $3$ | $(1,6)(2,5)(3,4)$ |
| 7A1 | $7$ | $2$ | $7$ | $6$ | $(1,5,2,6,3,7,4)$ |
| 7A2 | $7$ | $2$ | $7$ | $6$ | $(1,2,3,4,5,6,7)$ |
| 7A3 | $7$ | $2$ | $7$ | $6$ | $(1,6,4,2,7,5,3)$ |
Malle's constant $a(G)$: $1/3$
Character table
| 1A | 2A | 7A1 | 7A2 | 7A3 | ||
| Size | 1 | 7 | 2 | 2 | 2 | |
| 2 P | 1A | 1A | 7A2 | 7A3 | 7A1 | |
| 7 P | 1A | 2A | 7A3 | 7A1 | 7A2 | |
| Type | ||||||
| 14.1.1a | R | |||||
| 14.1.1b | R | |||||
| 14.1.2a1 | R | |||||
| 14.1.2a2 | R | |||||
| 14.1.2a3 | R |
Regular extensions
| $f_{ 1 } =$ |
$x^{7} - x^{6} - t x^{5} + 6 x^{4} + \left(2 t + 39\right) x^{3} + 17 x^{2} - t x + 2$
|