Group action invariants
| Degree $n$ : | $7$ | |
| Transitive number $t$ : | $2$ | |
| Group : | $D_{7}$ | |
| CHM label : | $D(7) = 7:2$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6)(2,5)(3,4), (1,2,3,4,5,6,7) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
14T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 1 $ | $7$ | $2$ | $(2,7)(3,6)(4,5)$ |
| $ 7 $ | $2$ | $7$ | $(1,2,3,4,5,6,7)$ |
| $ 7 $ | $2$ | $7$ | $(1,3,5,7,2,4,6)$ |
| $ 7 $ | $2$ | $7$ | $(1,4,7,3,6,2,5)$ |
Group invariants
| Order: | $14=2 \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [14, 1] |
| Character table: |
2 1 1 . . .
7 1 . 1 1 1
1a 2a 7a 7b 7c
2P 1a 1a 7b 7c 7a
3P 1a 2a 7c 7a 7b
5P 1a 2a 7b 7c 7a
7P 1a 2a 1a 1a 1a
X.1 1 1 1 1 1
X.2 1 -1 1 1 1
X.3 2 . A B C
X.4 2 . B C A
X.5 2 . C A B
A = E(7)+E(7)^6
B = E(7)^2+E(7)^5
C = E(7)^3+E(7)^4
|