Normalized defining polynomial
\( x^{6} - 3x^{5} - 11x^{4} + 13x^{3} + 26x^{2} - 6x - 4 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[6, 0]$ |
| |
| Discriminant: |
\(898505968\)
\(\medspace = 2^{4}\cdot 197^{2}\cdot 1447\)
|
| |
| Root discriminant: | \(31.06\) |
| |
| Galois root discriminant: | $2^{4/3}197^{2/3}1447^{1/2}\approx 3245.2767911028536$ | ||
| Ramified primes: |
\(2\), \(197\), \(1447\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{1447}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$
| Monogenic: | No | |
| Index: | $2$ | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | $C_{2}$, which has order $2$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{4}a^{5}-a^{4}-\frac{7}{4}a^{3}+4a^{2}+\frac{3}{2}a$, $\frac{1}{2}a^{5}-2a^{4}-\frac{7}{2}a^{3}+9a^{2}+4a-3$, $\frac{1}{2}a^{4}-\frac{5}{2}a^{3}+6a-1$, $\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{17}{4}a^{3}+4a^{2}+\frac{23}{2}a-6$, $\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{13}{4}a^{3}-a^{2}+\frac{23}{2}a+4$
|
| |
| Regulator: | \( 1746.7199761 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{0}\cdot 1746.7199761 \cdot 1}{2\cdot\sqrt{898505968}}\cr\approx \mathstrut & 1.8647163651 \end{aligned}\]
Galois group
| A non-solvable group of order 720 |
| The 11 conjugacy class representatives for $S_6$ |
| Character table for $S_6$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | 6.6.1168181874147249833728.1 |
| Degree 6 sibling: | 6.6.1168181874147249833728.1 |
| Degree 10 sibling: | deg 10 |
| Degree 12 siblings: | deg 12, deg 12 |
| Degree 15 siblings: | deg 15, deg 15 |
| Degree 20 siblings: | deg 20, deg 20, deg 20 |
| Degree 30 siblings: | deg 30, deg 30, deg 30, deg 30, deg 30, deg 30 |
| Degree 36 sibling: | deg 36 |
| Degree 40 siblings: | deg 40, deg 40, deg 40 |
| Degree 45 sibling: | deg 45 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ | ${\href{/padicField/5.6.0.1}{6} }$ | ${\href{/padicField/7.6.0.1}{6} }$ | ${\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.6.0.1}{6} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ | |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
|
\(197\)
| 197.1.3.2a1.1 | $x^{3} + 197$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 197.3.1.0a1.1 | $x^{3} + 3 x + 195$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
|
\(1447\)
| $\Q_{1447}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |