Normalized defining polynomial
\( x^{6} - 2x^{5} - 2418x^{4} + 71942x^{3} - 688504x^{2} + 1012172x + 8883170 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[6, 0]$ |
| |
| Discriminant: |
\(1168181874147249833728\)
\(\medspace = 2^{8}\cdot 197^{4}\cdot 1447^{3}\)
|
| |
| Root discriminant: | \(3245.28\) |
| |
| Galois root discriminant: | $2^{4/3}197^{2/3}1447^{1/2}\approx 3245.2767911028536$ | ||
| Ramified primes: |
\(2\), \(197\), \(1447\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{1447}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{9166449}a^{5}-\frac{49042}{3055483}a^{4}+\frac{1259039}{3055483}a^{3}+\frac{2314610}{9166449}a^{2}-\frac{596598}{3055483}a-\frac{1915795}{9166449}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{107198530089}{3055483}a^{5}+\frac{1745458592576}{3055483}a^{4}-\frac{227294722891472}{3055483}a^{3}+\frac{35\cdots 96}{3055483}a^{2}-\frac{87\cdots 28}{3055483}a-\frac{52\cdots 53}{3055483}$, $\frac{657667704002}{9166449}a^{5}+\frac{3569488011775}{3055483}a^{4}-\frac{464821097709033}{3055483}a^{3}+\frac{21\cdots 02}{9166449}a^{2}-\frac{17\cdots 70}{3055483}a-\frac{31\cdots 31}{9166449}$, $\frac{84\cdots 44}{9166449}a^{5}+\frac{54\cdots 95}{3055483}a^{4}-\frac{59\cdots 65}{3055483}a^{3}+\frac{26\cdots 07}{9166449}a^{2}-\frac{20\cdots 78}{3055483}a-\frac{37\cdots 07}{9166449}$, $\frac{97\cdots 49}{9166449}a^{5}+\frac{59\cdots 13}{3055483}a^{4}-\frac{66\cdots 23}{3055483}a^{3}+\frac{29\cdots 87}{9166449}a^{2}-\frac{23\cdots 64}{3055483}a-\frac{42\cdots 11}{9166449}$, $\frac{15\cdots 79}{9166449}a^{5}-\frac{23\cdots 23}{3055483}a^{4}-\frac{12\cdots 05}{3055483}a^{3}+\frac{11\cdots 86}{9166449}a^{2}-\frac{44\cdots 50}{3055483}a+\frac{50\cdots 87}{9166449}$
|
| |
| Regulator: | \( 287661241.618 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{0}\cdot 287661241.618 \cdot 2}{2\cdot\sqrt{1168181874147249833728}}\cr\approx \mathstrut & 0.538649291535 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 720 |
| The 11 conjugacy class representatives for $S_6$ |
| Character table for $S_6$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | 6.6.898505968.1 |
| Degree 6 sibling: | 6.6.898505968.1 |
| Degree 10 sibling: | deg 10 |
| Degree 12 siblings: | deg 12, deg 12 |
| Degree 15 siblings: | deg 15, deg 15 |
| Degree 20 siblings: | deg 20, deg 20, deg 20 |
| Degree 30 siblings: | deg 30, deg 30, deg 30, deg 30, deg 30, deg 30 |
| Degree 36 sibling: | deg 36 |
| Degree 40 siblings: | deg 40, deg 40, deg 40 |
| Degree 45 sibling: | deg 45 |
| Minimal sibling: | 6.6.898505968.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ | ${\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }$ | ${\href{/padicField/23.2.0.1}{2} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.6.0.1}{6} }$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.6.8a1.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $$[2]_{3}^{2}$$ |
|
\(197\)
| 197.2.3.4a1.1 | $x^{6} + 576 x^{5} + 110598 x^{4} + 7080192 x^{3} + 221196 x^{2} + 2501 x + 8$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $$[\ ]_{3}^{6}$$ |
|
\(1447\)
| Deg $6$ | $2$ | $3$ | $3$ |