Group action invariants
| Degree $n$ : | $6$ | |
| Transitive number $t$ : | $16$ | |
| Group : | $S_6$ | |
| CHM label : | $S6$ | |
| Parity: | $-1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2), (1,2,3,4,5,6) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Low degree siblings
6T16, 10T32, 12T183 x 2, 15T28 x 2, 20T145, 20T149 x 2, 30T164 x 2, 30T166 x 2, 30T176 x 2, 36T1252, 40T589, 40T592 x 2, 45T96Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1 $ | $15$ | $2$ | $(5,6)$ |
| $ 3, 1, 1, 1 $ | $40$ | $3$ | $(4,5,6)$ |
| $ 2, 2, 1, 1 $ | $45$ | $2$ | $(3,4)(5,6)$ |
| $ 4, 1, 1 $ | $90$ | $4$ | $(3,4,5,6)$ |
| $ 3, 2, 1 $ | $120$ | $6$ | $(2,3)(4,5,6)$ |
| $ 5, 1 $ | $144$ | $5$ | $(2,3,4,5,6)$ |
| $ 2, 2, 2 $ | $15$ | $2$ | $(1,2)(3,4)(5,6)$ |
| $ 4, 2 $ | $90$ | $4$ | $(1,2)(3,4,5,6)$ |
| $ 3, 3 $ | $40$ | $3$ | $(1,2,3)(4,5,6)$ |
| $ 6 $ | $120$ | $6$ | $(1,2,3,4,5,6)$ |
Group invariants
| Order: | $720=2^{4} \cdot 3^{2} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [720, 763] |
| Character table: |
2 4 4 1 4 3 1 . 4 3 1 1
3 2 1 2 . . 1 . 1 . 2 1
5 1 . . . . . 1 . . . .
1a 2a 3a 2b 4a 6a 5a 2c 4b 3b 6b
2P 1a 1a 3a 1a 2b 3a 5a 1a 2b 3b 3b
3P 1a 2a 1a 2b 4a 2a 5a 2c 4b 1a 2c
5P 1a 2a 3a 2b 4a 6a 1a 2c 4b 3b 6b
X.1 1 -1 1 1 -1 -1 1 -1 1 1 -1
X.2 5 -3 2 1 -1 . . 1 -1 -1 1
X.3 9 -3 . 1 1 . -1 -3 1 . .
X.4 5 -1 -1 1 1 -1 . 3 -1 2 .
X.5 10 -2 1 -2 . 1 . 2 . 1 -1
X.6 16 . -2 . . . 1 . . -2 .
X.7 5 1 -1 1 -1 1 . -3 -1 2 .
X.8 10 2 1 -2 . -1 . -2 . 1 1
X.9 9 3 . 1 -1 . -1 3 1 . .
X.10 5 3 2 1 1 . . -1 -1 -1 -1
X.11 1 1 1 1 1 1 1 1 1 1 1
|