# Properties

 Label 6.2.184512.1 Degree $6$ Signature $[2, 2]$ Discriminant $184512$ Root discriminant $7.55$ Ramified primes $2, 3, 31$ Class number $1$ Class group trivial Galois group $S_4\times C_2$ (as 6T11)

# Related objects

Show commands: SageMath / Pari/GP / Magma

## Normalizeddefining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^6 - 3*x^4 + 4*x^2 - 3)

gp: K = bnfinit(x^6 - 3*x^4 + 4*x^2 - 3, 1)

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 4, 0, -3, 0, 1]);

$$x^{6} - 3 x^{4} + 4 x^{2} - 3$$

sage: K.defining_polynomial()

gp: K.pol

magma: DefiningPolynomial(K);

## Invariants

 Degree: $6$ sage: K.degree()  gp: poldegree(K.pol)  magma: Degree(K); Signature: $[2, 2]$ sage: K.signature()  gp: K.sign  magma: Signature(K); Discriminant: $$184512$$$$\medspace = 2^{6}\cdot 3\cdot 31^{2}$$ sage: K.disc()  gp: K.disc  magma: Discriminant(Integers(K)); Root discriminant: $7.55$ sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol))  magma: Abs(Discriminant(Integers(K)))^(1/Degree(K)); Ramified primes: $2, 3, 31$ sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~  magma: PrimeDivisors(Discriminant(Integers(K))); $|\Aut(K/\Q)|$: $2$ This field is not Galois over $\Q$. This is not a CM field.

## Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$

sage: K.integral_basis()

gp: K.zk

magma: IntegralBasis(K);

## Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()

gp: K.clgp

magma: ClassGroup(K);

## Unit group

sage: UK = K.unit_group()

magma: UK, f := UnitGroup(K);

 Rank: $3$ sage: UK.rank()  gp: K.fu  magma: UnitRank(K); Torsion generator: $$-1$$ (order $2$) sage: UK.torsion_generator()  gp: K.tu[2]  magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K); Fundamental units: $$a^{2} - 1$$,  $$a^{4} - 2 a^{2} - a + 1$$,  $$a - 1$$ sage: UK.fundamental_units()  gp: K.fu  magma: [K!f(g): g in Generators(UK)]; Regulator: $$2.02211382007$$ sage: K.regulator()  gp: K.reg  magma: Regulator(K);

## Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{2}\cdot(2\pi)^{2}\cdot 2.02211382007 \cdot 1}{2\sqrt{184512}}\approx 0.371691835479$

## Galois group

$C_2\times S_4$ (as 6T11):

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

magma: GaloisGroup(K);

 A solvable group of order 48 The 10 conjugacy class representatives for $S_4\times C_2$ Character table for $S_4\times C_2$

## Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

## Sibling algebras

 Twin sextic algebra: $$\Q(\sqrt{-93})$$ $\times$ 4.2.17856.2 Degree 6 sibling: 6.0.5719872.1 Degree 8 siblings: 8.4.1275346944.1, 8.0.1225608413184.13 Degree 12 siblings: Deg 12, Deg 12, Deg 12, Deg 12, Deg 12, Deg 12 Degree 16 sibling: Deg 16 Degree 24 siblings: Deg 24, Deg 24, Deg 24, Deg 24

## Frobenius cycle types

 $p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$ Cycle type R R ${\href{/padicField/5.6.0.1}{6} }$ ${\href{/padicField/7.6.0.1}{6} }$ ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.2.0.1}{2} }^{3}$ ${\href{/padicField/19.6.0.1}{6} }$ ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ R ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.6.0.1}{6} }$ ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

## Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.6$x^{6} - 13 x^{4} + 7 x^{2} - 3$$2$$3$$6$$A_4\times C_2$$[2, 2, 2]^{3} 33.2.1.1x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2} 3.2.0.1x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
$31$31.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2} 31.2.1.2x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.2$x^{2} + 217$$2$$1$$1$$C_2$$[\ ]_{2}$

## Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ $$\Q$$ $C_1$ $1$ $1$
1.372.2t1.a.a$1$ $2^{2} \cdot 3 \cdot 31$ $$\Q(\sqrt{-93})$$ $C_2$ (as 2T1) $1$ $-1$
1.31.2t1.a.a$1$ $31$ $$\Q(\sqrt{-31})$$ $C_2$ (as 2T1) $1$ $-1$
1.12.2t1.a.a$1$ $2^{2} \cdot 3$ $$\Q(\sqrt{3})$$ $C_2$ (as 2T1) $1$ $1$
2.4464.6t3.a.a$2$ $2^{4} \cdot 3^{2} \cdot 31$ 6.0.51478848.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.31.3t2.b.a$2$ $31$ 3.1.31.1 $S_3$ (as 3T2) $1$ $0$
3.17856.4t5.b.a$3$ $2^{6} \cdot 3^{2} \cdot 31$ 4.2.17856.2 $S_4$ (as 4T5) $1$ $1$
* 3.5952.6t11.f.a$3$ $2^{6} \cdot 3 \cdot 31$ 6.2.184512.1 $S_4\times C_2$ (as 6T11) $1$ $1$
3.184512.6t11.f.a$3$ $2^{6} \cdot 3 \cdot 31^{2}$ 6.2.184512.1 $S_4\times C_2$ (as 6T11) $1$ $-1$
3.553536.6t8.b.a$3$ $2^{6} \cdot 3^{2} \cdot 31^{2}$ 4.2.17856.2 $S_4$ (as 4T5) $1$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.