Group action invariants
| Degree $n$ : | $6$ | |
| Transitive number $t$ : | $11$ | |
| Group : | $S_4\times C_2$ | |
| CHM label : | $2S_{4}(6) = [2^{3}]S(3) = 2 wr S(3)$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,5)(2,4), (1,3,5)(2,4,6), (3,6) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Low degree siblings
6T11, 8T24 x 2, 12T21, 12T22, 12T23 x 2, 12T24 x 2, 16T61, 24T46, 24T47, 24T48 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 1, 1, 1, 1 $ | $3$ | $2$ | $(3,6)$ |
| $ 2, 2, 1, 1 $ | $6$ | $2$ | $(2,3)(5,6)$ |
| $ 4, 1, 1 $ | $6$ | $4$ | $(2,3,5,6)$ |
| $ 2, 2, 1, 1 $ | $3$ | $2$ | $(2,5)(3,6)$ |
| $ 2, 2, 2 $ | $6$ | $2$ | $(1,2)(3,6)(4,5)$ |
| $ 3, 3 $ | $8$ | $3$ | $(1,2,3)(4,5,6)$ |
| $ 6 $ | $8$ | $6$ | $(1,2,3,4,5,6)$ |
| $ 4, 2 $ | $6$ | $4$ | $(1,2,4,5)(3,6)$ |
| $ 2, 2, 2 $ | $1$ | $2$ | $(1,4)(2,5)(3,6)$ |
Group invariants
| Order: | $48=2^{4} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [48, 48] |
| Character table: |
2 4 4 3 3 4 3 1 1 3 4
3 1 . . . . . 1 1 . 1
1a 2a 2b 4a 2c 2d 3a 6a 4b 2e
2P 1a 1a 1a 2c 1a 1a 3a 3a 2c 1a
3P 1a 2a 2b 4a 2c 2d 1a 2e 4b 2e
5P 1a 2a 2b 4a 2c 2d 3a 6a 4b 2e
X.1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 1 1 1 -1 -1 -1
X.3 1 -1 1 -1 1 -1 1 -1 1 -1
X.4 1 1 -1 -1 1 -1 1 1 -1 1
X.5 2 -2 . . 2 . -1 1 . -2
X.6 2 2 . . 2 . -1 -1 . 2
X.7 3 -1 -1 1 -1 -1 . . 1 3
X.8 3 -1 1 -1 -1 1 . . -1 3
X.9 3 1 -1 -1 -1 1 . . 1 -3
X.10 3 1 1 1 -1 -1 . . -1 -3
|