Show commands: Magma
Group invariants
Abstract group: | $S_4\times C_2$ |
| |
Order: | $48=2^{4} \cdot 3$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $6$ |
| |
Transitive number $t$: | $11$ |
| |
CHM label: | $2S_{4}(6) = [2^{3}]S(3) = 2 wr S(3)$ | ||
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,5)(2,4)$, $(1,3,5)(2,4,6)$, $(3,6)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Low degree siblings
6T11, 8T24 x 2, 12T21, 12T22, 12T23 x 2, 12T24 x 2, 16T61, 24T46, 24T47, 24T48 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{6}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{3}$ | $1$ | $2$ | $3$ | $(1,4)(2,5)(3,6)$ |
2B | $2,1^{4}$ | $3$ | $2$ | $1$ | $(2,5)$ |
2C | $2^{2},1^{2}$ | $3$ | $2$ | $2$ | $(1,4)(2,5)$ |
2D | $2^{3}$ | $6$ | $2$ | $3$ | $(1,2)(3,6)(4,5)$ |
2E | $2^{2},1^{2}$ | $6$ | $2$ | $2$ | $(1,2)(4,5)$ |
3A | $3^{2}$ | $8$ | $3$ | $4$ | $(1,2,6)(3,4,5)$ |
4A | $4,2$ | $6$ | $4$ | $4$ | $(1,2,4,5)(3,6)$ |
4B | $4,1^{2}$ | $6$ | $4$ | $3$ | $(1,2,4,5)$ |
6A | $6$ | $8$ | $6$ | $5$ | $(1,3,2,4,6,5)$ |
Character table
1A | 2A | 2B | 2C | 2D | 2E | 3A | 4A | 4B | 6A | ||
Size | 1 | 1 | 3 | 3 | 6 | 6 | 8 | 6 | 6 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 2C | 2C | 3A | |
3 P | 1A | 2A | 2B | 2C | 2D | 2E | 1A | 4A | 4B | 2A | |
Type | |||||||||||
48.48.1a | R | ||||||||||
48.48.1b | R | ||||||||||
48.48.1c | R | ||||||||||
48.48.1d | R | ||||||||||
48.48.2a | R | ||||||||||
48.48.2b | R | ||||||||||
48.48.3a | R | ||||||||||
48.48.3b | R | ||||||||||
48.48.3c | R | ||||||||||
48.48.3d | R |
Regular extensions
$f_{ 1 } =$ |
$x^{6} + x^{2} + t$
|