Normalized defining polynomial
\( x^{6} - 3x^{5} + 5x^{4} - 4x^{3} + 2x^{2} + x + 1 \)
Invariants
| Degree: | $6$ |
| |
| Signature: | $[0, 3]$ |
| |
| Discriminant: |
\(-548899\)
\(\medspace = -\,13\cdot 42223\)
|
| |
| Root discriminant: | \(9.05\) |
| |
| Galois root discriminant: | $13^{1/2}42223^{1/2}\approx 740.8771828042755$ | ||
| Ramified primes: |
\(13\), \(42223\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-548899}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $2$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{5}-3a^{4}+4a^{3}-2a^{2}+a$
|
| |
| Regulator: | \( 3.8637767043 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 3.8637767043 \cdot 1}{2\cdot\sqrt{548899}}\cr\approx \mathstrut & 0.64680803947 \end{aligned}\]
Galois group
| A non-solvable group of order 720 |
| The 11 conjugacy class representatives for $S_6$ |
| Character table for $S_6$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling algebras
| Twin sextic algebra: | 6.4.165377841297016699.1 |
| Degree 6 sibling: | 6.4.165377841297016699.1 |
| Degree 10 sibling: | deg 10 |
| Degree 12 siblings: | deg 12, deg 12 |
| Degree 15 siblings: | deg 15, deg 15 |
| Degree 20 siblings: | deg 20, deg 20, deg 20 |
| Degree 30 siblings: | deg 30, deg 30, deg 30, deg 30, deg 30, deg 30 |
| Degree 36 sibling: | deg 36 |
| Degree 40 siblings: | deg 40, deg 40, deg 40 |
| Degree 45 sibling: | deg 45 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.6.0.1}{6} }$ | ${\href{/padicField/3.4.0.1}{4} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.5.0.1}{5} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.6.0.1}{6} }$ | ${\href{/padicField/11.5.0.1}{5} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | R | ${\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.5.0.1}{5} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{3}$ | ${\href{/padicField/43.6.0.1}{6} }$ | ${\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(13\)
| 13.1.2.1a1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 13.4.1.0a1.1 | $x^{4} + 3 x^{2} + 12 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(42223\)
| $\Q_{42223}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |