Normalized defining polynomial
\( x^{6} - 3x^{4} - 2x^{3} + 9x^{2} + 12x + 4 \)
Invariants
Degree: | $6$ |
| |
Signature: | $[0, 3]$ |
| |
Discriminant: |
\(-314928\)
\(\medspace = -\,2^{4}\cdot 3^{9}\)
|
| |
Root discriminant: | \(8.25\) |
| |
Galois root discriminant: | $2\cdot 3^{3/2}\approx 10.392304845413264$ | ||
Ramified primes: |
\(2\), \(3\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-3}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-3}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{8}a^{5}+\frac{1}{4}a^{4}+\frac{1}{8}a^{3}+\frac{1}{8}a-\frac{1}{4}$
Monogenic: | No | |
Index: | $2$ | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $2$ |
| |
Torsion generator: |
\( -\frac{9}{8} a^{5} + \frac{3}{4} a^{4} + \frac{23}{8} a^{3} - \frac{81}{8} a - \frac{23}{4} \)
(order $6$)
|
| |
Fundamental units: |
$a^{5}-a^{4}-2a^{3}+9a+3$, $\frac{1}{2}a^{5}-\frac{3}{2}a^{3}-a^{2}+\frac{7}{2}a+4$
|
| |
Regulator: | \( 8.64762228954 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 8.64762228954 \cdot 1}{6\cdot\sqrt{314928}}\cr\approx \mathstrut & 0.637058668248 \end{aligned}\]
Galois group
A solvable group of order 12 |
The 6 conjugacy class representatives for $D_{6}$ |
Character table for $D_{6}$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 3.1.324.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Galois closure: | 12.0.1586874322944.4 |
Twin sextic algebra: | 3.1.324.1 $\times$ \(\Q(\sqrt{3}) \) $\times$ \(\Q\) |
Degree 6 sibling: | 6.2.1259712.2 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }$ | ${\href{/padicField/7.2.0.1}{2} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }$ | ${\href{/padicField/19.2.0.1}{2} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{3}$ | ${\href{/padicField/29.6.0.1}{6} }$ | ${\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{3}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
2.2.2.4a1.1 | $x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 5$ | $2$ | $2$ | $4$ | $C_2^2$ | $$[2]^{2}$$ | |
\(3\)
| 3.1.6.9a2.1 | $x^{6} + 3 x^{4} + 3$ | $6$ | $1$ | $9$ | $D_{6}$ | $$[2]_{2}^{2}$$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.12.2t1.a.a | $1$ | $ 2^{2} \cdot 3 $ | \(\Q(\sqrt{3}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
* | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 2.324.3t2.b.a | $2$ | $ 2^{2} \cdot 3^{4}$ | 3.1.324.1 | $S_3$ (as 3T2) | $1$ | $0$ |
* | 2.324.6t3.b.a | $2$ | $ 2^{2} \cdot 3^{4}$ | 6.0.314928.2 | $D_{6}$ (as 6T3) | $1$ | $0$ |