Properties

Label 6.0.139968000.1
Degree $6$
Signature $[0, 3]$
Discriminant $-139968000$
Root discriminant \(22.79\)
Ramified primes $2,3,5$
Class number $4$
Class group [2, 2]
Galois group $S_3$ (as 6T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^6 + 12*x^4 + 21*x^2 + 30)
 
Copy content gp:K = bnfinit(y^6 + 12*y^4 + 21*y^2 + 30, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 + 12*x^4 + 21*x^2 + 30);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^6 + 12*x^4 + 21*x^2 + 30)
 

\( x^{6} + 12x^{4} + 21x^{2} + 30 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $6$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 3]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-139968000\) \(\medspace = -\,2^{9}\cdot 3^{7}\cdot 5^{3}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(22.79\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{7/6}5^{1/2}\approx 22.786176627742247$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-30}) \)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $S_3$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.
Maximal CM subfield:  \(\Q(\sqrt{-30}) \)

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{4}-\frac{3}{8}a^{2}+\frac{1}{4}$, $\frac{1}{16}a^{5}-\frac{1}{16}a^{4}-\frac{3}{16}a^{3}+\frac{3}{16}a^{2}+\frac{1}{8}a-\frac{1}{8}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  $8$
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{2}\times C_{2}$, which has order $4$
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}$, which has order $4$
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $2$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{16}a^{5}+\frac{25}{16}a^{4}+\frac{5}{16}a^{3}+\frac{45}{16}a^{2}+\frac{1}{8}a+\frac{41}{8}$, $\frac{59}{16}a^{5}-\frac{19}{16}a^{4}+\frac{631}{16}a^{3}-\frac{95}{16}a^{2}+\frac{139}{8}a+\frac{509}{8}$ Copy content Toggle raw display
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 97.8050078919 \)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 97.8050078919 \cdot 4}{2\cdot\sqrt{139968000}}\cr\approx \mathstrut & 4.10125067324 \end{aligned}\]

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^6 + 12*x^4 + 21*x^2 + 30) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^6 + 12*x^4 + 21*x^2 + 30, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^6 + 12*x^4 + 21*x^2 + 30); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^6 + 12*x^4 + 21*x^2 + 30); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_3$ (as 6T2):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 6
The 3 conjugacy class representatives for $S_3$
Character table for $S_3$

Intermediate fields

\(\Q(\sqrt{-30}) \), 3.1.1080.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling algebras

Twin sextic algebra: 3.1.1080.1 $\times$ \(\Q\) $\times$ \(\Q\) $\times$ \(\Q\)
Degree 3 sibling: 3.1.1080.1
Minimal sibling: 3.1.1080.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R ${\href{/padicField/7.2.0.1}{2} }^{3}$ ${\href{/padicField/11.3.0.1}{3} }^{2}$ ${\href{/padicField/13.3.0.1}{3} }^{2}$ ${\href{/padicField/17.3.0.1}{3} }^{2}$ ${\href{/padicField/19.2.0.1}{2} }^{3}$ ${\href{/padicField/23.3.0.1}{3} }^{2}$ ${\href{/padicField/29.3.0.1}{3} }^{2}$ ${\href{/padicField/31.3.0.1}{3} }^{2}$ ${\href{/padicField/37.1.0.1}{1} }^{6}$ ${\href{/padicField/41.2.0.1}{2} }^{3}$ ${\href{/padicField/43.3.0.1}{3} }^{2}$ ${\href{/padicField/47.3.0.1}{3} }^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.1.0.1}{1} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.2.3a1.3$x^{2} + 4 x + 2$$2$$1$$3$$C_2$$$[3]$$
2.1.2.3a1.3$x^{2} + 4 x + 2$$2$$1$$3$$C_2$$$[3]$$
2.1.2.3a1.3$x^{2} + 4 x + 2$$2$$1$$3$$C_2$$$[3]$$
\(3\) Copy content Toggle raw display 3.1.6.7a1.1$x^{6} + 3 x^{2} + 3$$6$$1$$7$$S_3$$$[\frac{3}{2}]_{2}$$
\(5\) Copy content Toggle raw display 5.1.2.1a1.1$x^{2} + 5$$2$$1$$1$$C_2$$$[\ ]_{2}$$
5.1.2.1a1.1$x^{2} + 5$$2$$1$$1$$C_2$$$[\ ]_{2}$$
5.1.2.1a1.1$x^{2} + 5$$2$$1$$1$$C_2$$$[\ ]_{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)