Normalized defining polynomial
\( x^{6} + 12x^{4} + 21x^{2} + 30 \)
Invariants
Degree: | $6$ |
| |
Signature: | $[0, 3]$ |
| |
Discriminant: |
\(-139968000\)
\(\medspace = -\,2^{9}\cdot 3^{7}\cdot 5^{3}\)
|
| |
Root discriminant: | \(22.79\) |
| |
Galois root discriminant: | $2^{3/2}3^{7/6}5^{1/2}\approx 22.786176627742247$ | ||
Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-30}) \) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $S_3$ |
| |
This field is Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-30}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{4}-\frac{3}{8}a^{2}+\frac{1}{4}$, $\frac{1}{16}a^{5}-\frac{1}{16}a^{4}-\frac{3}{16}a^{3}+\frac{3}{16}a^{2}+\frac{1}{8}a-\frac{1}{8}$
Monogenic: | No | |
Index: | $8$ | |
Inessential primes: | $2$ |
Class group and class number
Ideal class group: | $C_{2}\times C_{2}$, which has order $4$ |
| |
Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ |
|
Unit group
Rank: | $2$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$\frac{1}{16}a^{5}+\frac{25}{16}a^{4}+\frac{5}{16}a^{3}+\frac{45}{16}a^{2}+\frac{1}{8}a+\frac{41}{8}$, $\frac{59}{16}a^{5}-\frac{19}{16}a^{4}+\frac{631}{16}a^{3}-\frac{95}{16}a^{2}+\frac{139}{8}a+\frac{509}{8}$
|
| |
Regulator: | \( 97.8050078919 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{3}\cdot 97.8050078919 \cdot 4}{2\cdot\sqrt{139968000}}\cr\approx \mathstrut & 4.10125067324 \end{aligned}\]
Galois group
A solvable group of order 6 |
The 3 conjugacy class representatives for $S_3$ |
Character table for $S_3$ |
Intermediate fields
\(\Q(\sqrt{-30}) \), 3.1.1080.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling algebras
Twin sextic algebra: | 3.1.1080.1 $\times$ \(\Q\) $\times$ \(\Q\) $\times$ \(\Q\) |
Degree 3 sibling: | 3.1.1080.1 |
Minimal sibling: | 3.1.1080.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.2.0.1}{2} }^{3}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}$ | ${\href{/padicField/37.1.0.1}{1} }^{6}$ | ${\href{/padicField/41.2.0.1}{2} }^{3}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
2.1.2.3a1.3 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
\(3\)
| 3.1.6.7a1.1 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ |
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |