Normalized defining polynomial
sage: x = polygen(QQ); K.<a> = NumberField(x^2 + 30)
gp: K = bnfinit(y^2 + 30, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^2 + 30);
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^2 + 30)
\( x^{2} + 30 \)
sage: K.defining_polynomial()
gp: K.pol
magma: DefiningPolynomial(K);
oscar: defining_polynomial(K)
Invariants
Degree: | $2$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 1]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-120\) \(\medspace = -\,2^{3}\cdot 3\cdot 5\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(10.95\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}5^{1/2}\approx 10.954451150103322$ | ||
Ramified primes: | \(2\), \(3\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-30}) \) | ||
$\card{ \Gal(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(120=2^{3}\cdot 3\cdot 5\) | ||
Dirichlet character group: | $\lbrace$$\chi_{120}(1,·)$, $\chi_{120}(29,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-30}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$
sage: K.integral_basis()
gp: K.zk
magma: IntegralBasis(K);
oscar: basis(OK)
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
sage: K.class_group().invariants()
gp: K.clgp
magma: ClassGroup(K);
oscar: class_group(K)
Unit group
sage: UK = K.unit_group()
magma: UK, fUK := UnitGroup(K);
oscar: UK, fUK = unit_group(OK)
Rank: | $0$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Regulator: | \( 1 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr =\mathstrut &\frac{2^{0}\cdot(2\pi)^{1}\cdot 1 \cdot 4}{2\cdot\sqrt{120}}\cr\approx \mathstrut & 1.14714744190910 \end{aligned}\]
# self-contained SageMath code snippet to compute the analytic class number formula
x = polygen(QQ); K.<a> = NumberField(x^2 + 30)
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
# self-contained Pari/GP code snippet to compute the analytic class number formula
K = bnfinit(x^2 + 30, 1);
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
/* self-contained Magma code snippet to compute the analytic class number formula */
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^2 + 30);
OK := Integers(K); DK := Discriminant(OK);
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
hK := #clK; wK := #TorsionSubgroup(UK);
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
# self-contained Oscar code snippet to compute the analytic class number formula
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^2 + 30);
OK = ring_of_integers(K); DK = discriminant(OK);
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
hK = order(clK); wK = torsion_units_order(K);
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
Galois group
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
magma: G = GaloisGroup(K);
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
A cyclic group of order 2 |
The 2 conjugacy class representatives for $C_2$ |
Character table for $C_2$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
sage: K.subfields()[1:-1]
gp: L = nfsubfields(K); L[2..length(b)]
magma: L := Subfields(K); L[2..#L];
oscar: subfields(K)[2:end-1]
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.1 | $x^{2} + 4 x + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
\(3\) | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
\(5\) | 5.2.1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.120.2t1.b.a | $1$ | $ 2^{3} \cdot 3 \cdot 5 $ | \(\Q(\sqrt{-30}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.