Normalized defining polynomial
\( x^{5} - x^{4} - 216x^{3} - 1147x^{2} - 805x + 2629 \)
Invariants
| Degree: | $5$ |
| |
| Signature: | $[5, 0]$ |
| |
| Discriminant: |
\(85662167761\)
\(\medspace = 541^{4}\)
|
| |
| Root discriminant: | \(153.66\) |
| |
| Galois root discriminant: | $541^{4/5}\approx 153.65893262567562$ | ||
| Ramified primes: |
\(541\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_5$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(541\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{541}(48,·)$, $\chi_{541}(1,·)$, $\chi_{541}(140,·)$, $\chi_{541}(228,·)$, $\chi_{541}(124,·)$$\rbrace$ | ||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3421}a^{4}+\frac{873}{3421}a^{3}-\frac{97}{3421}a^{2}-\frac{400}{3421}a-\frac{133}{311}$
| Monogenic: | No | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $4$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{457}{311}a^{4}-\frac{2229}{311}a^{3}-\frac{90046}{311}a^{2}-\frac{175025}{311}a+\frac{304839}{311}$, $\frac{470}{311}a^{4}-\frac{2076}{311}a^{3}-\frac{94417}{311}a^{2}-\frac{216301}{311}a+\frac{361393}{311}$, $\frac{1}{11}a^{4}-\frac{7}{11}a^{3}-\frac{163}{11}a^{2}-\frac{323}{11}a+52$, $\frac{271}{3421}a^{4}+\frac{534}{3421}a^{3}-\frac{60497}{3421}a^{2}-\frac{474447}{3421}a-\frac{87358}{311}$
|
| |
| Regulator: | \( 5591.83636552 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{5}\cdot(2\pi)^{0}\cdot 5591.83636552 \cdot 1}{2\cdot\sqrt{85662167761}}\cr\approx \mathstrut & 0.305689067101 \end{aligned}\]
Galois group
| A cyclic group of order 5 |
| The 5 conjugacy class representatives for $C_5$ |
| Character table for $C_5$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.5.0.1}{5} }$ | ${\href{/padicField/3.5.0.1}{5} }$ | ${\href{/padicField/5.5.0.1}{5} }$ | ${\href{/padicField/7.5.0.1}{5} }$ | ${\href{/padicField/11.1.0.1}{1} }^{5}$ | ${\href{/padicField/13.5.0.1}{5} }$ | ${\href{/padicField/17.5.0.1}{5} }$ | ${\href{/padicField/19.5.0.1}{5} }$ | ${\href{/padicField/23.5.0.1}{5} }$ | ${\href{/padicField/29.5.0.1}{5} }$ | ${\href{/padicField/31.1.0.1}{1} }^{5}$ | ${\href{/padicField/37.5.0.1}{5} }$ | ${\href{/padicField/41.1.0.1}{1} }^{5}$ | ${\href{/padicField/43.5.0.1}{5} }$ | ${\href{/padicField/47.5.0.1}{5} }$ | ${\href{/padicField/53.5.0.1}{5} }$ | ${\href{/padicField/59.5.0.1}{5} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(541\)
| Deg $5$ | $5$ | $1$ | $4$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| * | 1.541.5t1.a.a | $1$ | $ 541 $ | 5.5.85662167761.1 | $C_5$ (as 5T1) | $0$ | $1$ |
| * | 1.541.5t1.a.b | $1$ | $ 541 $ | 5.5.85662167761.1 | $C_5$ (as 5T1) | $0$ | $1$ |
| * | 1.541.5t1.a.c | $1$ | $ 541 $ | 5.5.85662167761.1 | $C_5$ (as 5T1) | $0$ | $1$ |
| * | 1.541.5t1.a.d | $1$ | $ 541 $ | 5.5.85662167761.1 | $C_5$ (as 5T1) | $0$ | $1$ |