Normalized defining polynomial
\( x^{40} - 11 x^{35} + 89 x^{30} - 627 x^{25} + 4049 x^{20} - 20064 x^{15} + 91136 x^{10} - 360448 x^{5} + 1048576 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{16} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{4} a^{22} + \frac{1}{4} a^{17} + \frac{1}{4} a^{12} + \frac{1}{4} a^{7} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{23} - \frac{3}{8} a^{18} + \frac{1}{8} a^{13} - \frac{3}{8} a^{8} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{24} + \frac{5}{16} a^{19} - \frac{7}{16} a^{14} - \frac{3}{16} a^{9} + \frac{1}{16} a^{4}$, $\frac{1}{129568} a^{25} + \frac{5}{32} a^{20} + \frac{9}{32} a^{15} - \frac{3}{32} a^{10} + \frac{1}{32} a^{5} - \frac{627}{4049}$, $\frac{1}{259136} a^{26} + \frac{5}{64} a^{21} - \frac{23}{64} a^{16} + \frac{29}{64} a^{11} - \frac{31}{64} a^{6} + \frac{1711}{4049} a$, $\frac{1}{518272} a^{27} + \frac{5}{128} a^{22} + \frac{41}{128} a^{17} + \frac{29}{128} a^{12} + \frac{33}{128} a^{7} + \frac{1711}{8098} a^{2}$, $\frac{1}{1036544} a^{28} + \frac{5}{256} a^{23} - \frac{87}{256} a^{18} + \frac{29}{256} a^{13} - \frac{95}{256} a^{8} + \frac{1711}{16196} a^{3}$, $\frac{1}{2073088} a^{29} + \frac{5}{512} a^{24} - \frac{87}{512} a^{19} - \frac{227}{512} a^{14} + \frac{161}{512} a^{9} - \frac{14485}{32392} a^{4}$, $\frac{1}{4146176} a^{30} - \frac{11}{4146176} a^{25} - \frac{503}{1024} a^{20} + \frac{253}{1024} a^{15} + \frac{1}{1024} a^{10} - \frac{627}{129568} a^{5} + \frac{89}{4049}$, $\frac{1}{8292352} a^{31} - \frac{11}{8292352} a^{26} - \frac{503}{2048} a^{21} + \frac{253}{2048} a^{16} - \frac{1023}{2048} a^{11} + \frac{128941}{259136} a^{6} - \frac{1980}{4049} a$, $\frac{1}{16584704} a^{32} - \frac{11}{16584704} a^{27} - \frac{503}{4096} a^{22} - \frac{1795}{4096} a^{17} - \frac{1023}{4096} a^{12} - \frac{130195}{518272} a^{7} - \frac{990}{4049} a^{2}$, $\frac{1}{33169408} a^{33} - \frac{11}{33169408} a^{28} - \frac{503}{8192} a^{23} - \frac{1795}{8192} a^{18} + \frac{3073}{8192} a^{13} - \frac{130195}{1036544} a^{8} + \frac{3059}{8098} a^{3}$, $\frac{1}{66338816} a^{34} - \frac{11}{66338816} a^{29} - \frac{503}{16384} a^{24} - \frac{1795}{16384} a^{19} + \frac{3073}{16384} a^{14} - \frac{130195}{2073088} a^{9} - \frac{5039}{16196} a^{4}$, $\frac{1}{132677632} a^{35} - \frac{11}{132677632} a^{30} + \frac{89}{132677632} a^{25} + \frac{7421}{32768} a^{20} + \frac{1}{32768} a^{15} - \frac{627}{4146176} a^{10} + \frac{89}{129568} a^{5} - \frac{11}{4049}$, $\frac{1}{265355264} a^{36} - \frac{11}{265355264} a^{31} + \frac{89}{265355264} a^{26} + \frac{7421}{65536} a^{21} - \frac{32767}{65536} a^{16} + \frac{4145549}{8292352} a^{11} - \frac{129479}{259136} a^{6} + \frac{2019}{4049} a$, $\frac{1}{530710528} a^{37} - \frac{11}{530710528} a^{32} + \frac{89}{530710528} a^{27} + \frac{7421}{131072} a^{22} + \frac{32769}{131072} a^{17} + \frac{4145549}{16584704} a^{12} + \frac{129657}{518272} a^{7} + \frac{2019}{8098} a^{2}$, $\frac{1}{1061421056} a^{38} - \frac{11}{1061421056} a^{33} + \frac{89}{1061421056} a^{28} + \frac{7421}{262144} a^{23} + \frac{32769}{262144} a^{18} - \frac{12439155}{33169408} a^{13} + \frac{129657}{1036544} a^{8} - \frac{6079}{16196} a^{3}$, $\frac{1}{2122842112} a^{39} - \frac{11}{2122842112} a^{34} + \frac{89}{2122842112} a^{29} + \frac{7421}{524288} a^{24} - \frac{229375}{524288} a^{19} - \frac{12439155}{66338816} a^{14} + \frac{129657}{2073088} a^{9} + \frac{10117}{32392} a^{4}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{33169408} a^{38} - \frac{364229}{33169408} a^{13} \) (order $50$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20^{2}$ | $20^{2}$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{8}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |