Normalized defining polynomial
\( x^{4} - 8x^{2} - 6x + 8 \)
Invariants
Degree: | $4$ |
| |
Signature: | $[2, 1]$ |
| |
Discriminant: |
\(-40492\)
\(\medspace = -\,2^{2}\cdot 53\cdot 191\)
|
| |
Root discriminant: | \(14.19\) |
| |
Galois root discriminant: | $2^{2/3}53^{1/2}191^{1/2}\approx 159.7133731913881$ | ||
Ramified primes: |
\(2\), \(53\), \(191\)
|
| |
Discriminant root field: | \(\Q(\sqrt{-10123}) \) | ||
$\Aut(K/\Q)$: | $C_1$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
This field has no CM subfields. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}$
Monogenic: | No | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $2$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental units: |
$a-3$, $2a^{3}-6a^{2}-a+3$
|
| |
Regulator: | \( 24.2212565596 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{1}\cdot 24.2212565596 \cdot 1}{2\cdot\sqrt{40492}}\cr\approx \mathstrut & 1.51259242041 \end{aligned}\]
Galois group
A solvable group of order 24 |
The 5 conjugacy class representatives for $S_4$ |
Character table for $S_4$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Galois closure: | deg 24 |
Degree 6 siblings: | 6.2.1639602064.1, deg 6 |
Degree 8 sibling: | deg 8 |
Degree 12 siblings: | deg 12, deg 12 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }$ | ${\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }$ | ${\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.4.0.1}{4} }$ | ${\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }$ | R | ${\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
\(53\)
| 53.2.1.0a1.1 | $x^{2} + 49 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
53.1.2.1a1.1 | $x^{2} + 53$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
\(191\)
| 191.1.2.1a1.1 | $x^{2} + 191$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
191.2.1.0a1.1 | $x^{2} + 190 x + 19$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |