Normalized defining polynomial
\( x^{4} - 2x^{3} + x^{2} + 138 \)
Invariants
Degree: | $4$ |
| |
Signature: | $[0, 2]$ |
| |
Discriminant: |
\(304704\)
\(\medspace = 2^{6}\cdot 3^{2}\cdot 23^{2}\)
|
| |
Root discriminant: | \(23.49\) |
| |
Galois root discriminant: | $2^{3/2}3^{1/2}23^{1/2}\approx 23.49468024894146$ | ||
Ramified primes: |
\(2\), \(3\), \(23\)
|
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2^2$ |
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(552=2^{3}\cdot 3\cdot 23\) | ||
Dirichlet character group: | $\lbrace$$\chi_{552}(1,·)$, $\chi_{552}(323,·)$, $\chi_{552}(275,·)$, $\chi_{552}(505,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-138}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{47}a^{3}+\frac{22}{47}a^{2}+\frac{12}{47}a+\frac{6}{47}$
Monogenic: | No | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | $C_{2}\times C_{6}$, which has order $12$ |
| |
Narrow class group: | $C_{2}\times C_{6}$, which has order $12$ |
| |
Relative class number: | $12$ |
Unit group
Rank: | $1$ |
| |
Torsion generator: |
\( -1 \)
(order $2$)
|
| |
Fundamental unit: |
$\frac{4}{47}a^{3}-\frac{6}{47}a^{2}-\frac{46}{47}a+\frac{259}{47}$
|
| |
Regulator: | \( 4.58486333912 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{2}\cdot 4.58486333912 \cdot 12}{2\cdot\sqrt{304704}}\cr\approx \mathstrut & 1.96742553870 \end{aligned}\]
Galois group
An abelian group of order 4 |
The 4 conjugacy class representatives for $C_2^2$ |
Character table for $C_2^2$ |
Intermediate fields
\(\Q(\sqrt{-23}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-138}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Multiplicative Galois module structure
$U_{K^{gal}}/\textrm{Tors}(U_{K^{gal}}) \cong$ $A_1$ |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/29.1.0.1}{1} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
\(23\)
| 23.1.2.1a1.1 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
23.1.2.1a1.1 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |