Normalized defining polynomial
\( x^{4} - 2x^{2} + 10 \)
Invariants
Degree: | $4$ |
| |
Signature: | $[0, 2]$ |
| |
Discriminant: |
\(2560\)
\(\medspace = 2^{9}\cdot 5\)
|
| |
Root discriminant: | \(7.11\) |
| |
Galois root discriminant: | $2^{11/4}5^{1/2}\approx 15.042412372345574$ | ||
Ramified primes: |
\(2\), \(5\)
|
| |
Discriminant root field: | \(\Q(\sqrt{10}) \) | ||
$\Aut(K/\Q)$: | $C_2$ |
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. | |||
Maximal CM subfield: | \(\Q(\sqrt{-1}) \) |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{3}-\frac{1}{3}a$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Ideal class group: | Trivial group, which has order $1$ |
| |
Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
Rank: | $1$ |
| |
Torsion generator: |
\( -\frac{1}{3} a^{2} + \frac{1}{3} \)
(order $4$)
|
| |
Fundamental unit: |
$\frac{2}{3}a^{3}-a^{2}-\frac{2}{3}a+3$
|
| |
Regulator: | \( 3.93727585159 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{2}\cdot 3.93727585159 \cdot 1}{4\cdot\sqrt{2560}}\cr\approx \mathstrut & 0.768025440227 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $D_{4}$ |
Character table for $D_{4}$ |
Intermediate fields
\(\Q(\sqrt{-1}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | 8.0.2621440000.10 |
Degree 4 sibling: | 4.2.25600.1 |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.4.0.1}{4} }$ | ${\href{/padicField/13.1.0.1}{1} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }$ | ${\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.1.0.1}{1} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.4.9a1.4 | $x^{4} + 4 x^{3} + 10 x^{2} + 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $$[2, 3, \frac{7}{2}]$$ |
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.40.2t1.a.a | $1$ | $ 2^{3} \cdot 5 $ | \(\Q(\sqrt{10}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
1.40.2t1.b.a | $1$ | $ 2^{3} \cdot 5 $ | \(\Q(\sqrt{-10}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
* | 2.640.4t3.b.a | $2$ | $ 2^{7} \cdot 5 $ | 4.0.2560.2 | $D_{4}$ (as 4T3) | $1$ | $0$ |