Properties

Label 32.0.107...625.1
Degree $32$
Signature $[0, 16]$
Discriminant $1.075\times 10^{57}$
Root discriminant \(60.57\)
Ramified primes $5,7,13$
Class number $800$ (GRH)
Class group [20, 40] (GRH)
Galois group $C_2\times C_4^2$ (as 32T36)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 2*x^31 - 8*x^30 + 14*x^29 + 63*x^28 - 486*x^27 + 387*x^26 + 2813*x^25 - 1932*x^24 - 13702*x^23 + 47407*x^22 - 62094*x^21 - 62330*x^20 + 584480*x^19 - 1121097*x^18 - 487441*x^17 + 5274231*x^16 - 6441701*x^15 + 4479186*x^14 + 4910425*x^13 + 73936*x^12 - 31103793*x^11 + 29606989*x^10 - 37188866*x^9 - 1032078*x^8 + 18427375*x^7 + 9826086*x^6 + 38717700*x^5 - 4091466*x^4 + 4426189*x^3 + 7865200*x^2 + 5508449*x + 7890481)
 
gp: K = bnfinit(y^32 - 2*y^31 - 8*y^30 + 14*y^29 + 63*y^28 - 486*y^27 + 387*y^26 + 2813*y^25 - 1932*y^24 - 13702*y^23 + 47407*y^22 - 62094*y^21 - 62330*y^20 + 584480*y^19 - 1121097*y^18 - 487441*y^17 + 5274231*y^16 - 6441701*y^15 + 4479186*y^14 + 4910425*y^13 + 73936*y^12 - 31103793*y^11 + 29606989*y^10 - 37188866*y^9 - 1032078*y^8 + 18427375*y^7 + 9826086*y^6 + 38717700*y^5 - 4091466*y^4 + 4426189*y^3 + 7865200*y^2 + 5508449*y + 7890481, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 2*x^31 - 8*x^30 + 14*x^29 + 63*x^28 - 486*x^27 + 387*x^26 + 2813*x^25 - 1932*x^24 - 13702*x^23 + 47407*x^22 - 62094*x^21 - 62330*x^20 + 584480*x^19 - 1121097*x^18 - 487441*x^17 + 5274231*x^16 - 6441701*x^15 + 4479186*x^14 + 4910425*x^13 + 73936*x^12 - 31103793*x^11 + 29606989*x^10 - 37188866*x^9 - 1032078*x^8 + 18427375*x^7 + 9826086*x^6 + 38717700*x^5 - 4091466*x^4 + 4426189*x^3 + 7865200*x^2 + 5508449*x + 7890481);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 2*x^31 - 8*x^30 + 14*x^29 + 63*x^28 - 486*x^27 + 387*x^26 + 2813*x^25 - 1932*x^24 - 13702*x^23 + 47407*x^22 - 62094*x^21 - 62330*x^20 + 584480*x^19 - 1121097*x^18 - 487441*x^17 + 5274231*x^16 - 6441701*x^15 + 4479186*x^14 + 4910425*x^13 + 73936*x^12 - 31103793*x^11 + 29606989*x^10 - 37188866*x^9 - 1032078*x^8 + 18427375*x^7 + 9826086*x^6 + 38717700*x^5 - 4091466*x^4 + 4426189*x^3 + 7865200*x^2 + 5508449*x + 7890481)
 

\( x^{32} - 2 x^{31} - 8 x^{30} + 14 x^{29} + 63 x^{28} - 486 x^{27} + 387 x^{26} + 2813 x^{25} + \cdots + 7890481 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1075199861227118411720654551127625657377302646636962890625\) \(\medspace = 5^{24}\cdot 7^{16}\cdot 13^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(60.57\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}7^{1/2}13^{3/4}\approx 60.56671755573221$
Ramified primes:   \(5\), \(7\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $32$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(455=5\cdot 7\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{455}(1,·)$, $\chi_{455}(391,·)$, $\chi_{455}(8,·)$, $\chi_{455}(398,·)$, $\chi_{455}(272,·)$, $\chi_{455}(274,·)$, $\chi_{455}(148,·)$, $\chi_{455}(281,·)$, $\chi_{455}(27,·)$, $\chi_{455}(34,·)$, $\chi_{455}(421,·)$, $\chi_{455}(428,·)$, $\chi_{455}(174,·)$, $\chi_{455}(307,·)$, $\chi_{455}(181,·)$, $\chi_{455}(183,·)$, $\chi_{455}(57,·)$, $\chi_{455}(447,·)$, $\chi_{455}(64,·)$, $\chi_{455}(118,·)$, $\chi_{455}(454,·)$, $\chi_{455}(209,·)$, $\chi_{455}(83,·)$, $\chi_{455}(216,·)$, $\chi_{455}(92,·)$, $\chi_{455}(99,·)$, $\chi_{455}(356,·)$, $\chi_{455}(337,·)$, $\chi_{455}(363,·)$, $\chi_{455}(239,·)$, $\chi_{455}(372,·)$, $\chi_{455}(246,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2}a^{15}-\frac{1}{2}$, $\frac{1}{2}a^{16}-\frac{1}{2}a$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{20}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{21}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{22}-\frac{1}{2}a^{7}$, $\frac{1}{2}a^{23}-\frac{1}{2}a^{8}$, $\frac{1}{6}a^{24}-\frac{1}{6}a^{22}+\frac{1}{6}a^{16}+\frac{1}{3}a^{12}-\frac{1}{2}a^{9}-\frac{1}{3}a^{8}-\frac{1}{2}a^{7}+\frac{1}{3}a^{2}-\frac{1}{2}a-\frac{1}{3}$, $\frac{1}{6}a^{25}-\frac{1}{6}a^{23}+\frac{1}{6}a^{17}+\frac{1}{3}a^{13}-\frac{1}{2}a^{10}-\frac{1}{3}a^{9}-\frac{1}{2}a^{8}+\frac{1}{3}a^{3}-\frac{1}{2}a^{2}-\frac{1}{3}a$, $\frac{1}{12}a^{26}-\frac{1}{12}a^{25}-\frac{1}{12}a^{24}+\frac{1}{12}a^{23}-\frac{1}{4}a^{21}-\frac{1}{4}a^{19}+\frac{1}{12}a^{18}+\frac{1}{6}a^{17}-\frac{1}{4}a^{15}-\frac{1}{3}a^{14}-\frac{1}{6}a^{13}-\frac{1}{2}a^{12}+\frac{1}{4}a^{11}+\frac{1}{12}a^{10}-\frac{1}{12}a^{9}+\frac{1}{4}a^{8}+\frac{1}{4}a^{6}-\frac{1}{2}a^{5}+\frac{5}{12}a^{4}+\frac{1}{12}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a-\frac{1}{4}$, $\frac{1}{12}a^{27}-\frac{1}{12}a^{23}-\frac{1}{4}a^{22}-\frac{1}{4}a^{21}-\frac{1}{4}a^{20}-\frac{1}{6}a^{19}-\frac{1}{4}a^{18}-\frac{1}{6}a^{17}-\frac{1}{4}a^{16}-\frac{1}{12}a^{15}-\frac{1}{2}a^{14}-\frac{1}{3}a^{13}-\frac{1}{4}a^{12}+\frac{1}{3}a^{11}-\frac{1}{2}a^{10}-\frac{1}{6}a^{9}-\frac{1}{4}a^{8}+\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{12}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}+\frac{1}{12}a+\frac{1}{4}$, $\frac{1}{3106596}a^{28}-\frac{4175}{1035532}a^{27}+\frac{4173}{517766}a^{26}+\frac{50099}{1553298}a^{25}-\frac{175259}{3106596}a^{24}-\frac{237737}{1553298}a^{23}-\frac{27691}{1553298}a^{22}+\frac{94363}{517766}a^{21}-\frac{701159}{3106596}a^{20}-\frac{205605}{1035532}a^{19}-\frac{331217}{3106596}a^{18}-\frac{550409}{3106596}a^{17}-\frac{360115}{1553298}a^{16}-\frac{82489}{1035532}a^{15}+\frac{592753}{1553298}a^{14}-\frac{794131}{3106596}a^{13}-\frac{109645}{3106596}a^{12}-\frac{108929}{258883}a^{11}-\frac{673537}{1553298}a^{10}-\frac{1104695}{3106596}a^{9}-\frac{134651}{1553298}a^{8}+\frac{109748}{258883}a^{7}+\frac{355346}{776649}a^{6}+\frac{182669}{1035532}a^{5}+\frac{430661}{1035532}a^{4}-\frac{147253}{3106596}a^{3}-\frac{852631}{3106596}a^{2}+\frac{682175}{1553298}a-\frac{34045}{3106596}$, $\frac{1}{27\!\cdots\!72}a^{29}+\frac{11\!\cdots\!17}{27\!\cdots\!72}a^{28}+\frac{53\!\cdots\!33}{13\!\cdots\!86}a^{27}+\frac{19\!\cdots\!19}{27\!\cdots\!72}a^{26}-\frac{12\!\cdots\!77}{23\!\cdots\!81}a^{25}-\frac{23\!\cdots\!77}{27\!\cdots\!72}a^{24}-\frac{45\!\cdots\!65}{27\!\cdots\!72}a^{23}-\frac{66\!\cdots\!05}{46\!\cdots\!62}a^{22}-\frac{73\!\cdots\!72}{69\!\cdots\!43}a^{21}-\frac{23\!\cdots\!15}{27\!\cdots\!72}a^{20}-\frac{55\!\cdots\!02}{69\!\cdots\!43}a^{19}-\frac{12\!\cdots\!33}{69\!\cdots\!43}a^{18}+\frac{91\!\cdots\!55}{69\!\cdots\!43}a^{17}-\frac{10\!\cdots\!89}{27\!\cdots\!72}a^{16}+\frac{34\!\cdots\!19}{27\!\cdots\!72}a^{15}-\frac{12\!\cdots\!91}{52\!\cdots\!24}a^{14}+\frac{15\!\cdots\!51}{27\!\cdots\!72}a^{13}+\frac{68\!\cdots\!47}{13\!\cdots\!86}a^{12}-\frac{62\!\cdots\!03}{27\!\cdots\!72}a^{11}-\frac{19\!\cdots\!11}{13\!\cdots\!86}a^{10}+\frac{19\!\cdots\!67}{27\!\cdots\!72}a^{9}-\frac{24\!\cdots\!99}{93\!\cdots\!24}a^{8}-\frac{21\!\cdots\!58}{69\!\cdots\!43}a^{7}-\frac{31\!\cdots\!17}{69\!\cdots\!43}a^{6}+\frac{28\!\cdots\!25}{27\!\cdots\!72}a^{5}-\frac{64\!\cdots\!22}{69\!\cdots\!43}a^{4}-\frac{35\!\cdots\!81}{46\!\cdots\!62}a^{3}-\frac{43\!\cdots\!53}{13\!\cdots\!86}a^{2}+\frac{13\!\cdots\!21}{27\!\cdots\!72}a+\frac{11\!\cdots\!27}{60\!\cdots\!52}$, $\frac{1}{14\!\cdots\!16}a^{30}-\frac{1}{74\!\cdots\!58}a^{29}+\frac{35\!\cdots\!53}{24\!\cdots\!86}a^{28}+\frac{12\!\cdots\!65}{49\!\cdots\!72}a^{27}+\frac{25\!\cdots\!41}{74\!\cdots\!58}a^{26}-\frac{33\!\cdots\!84}{37\!\cdots\!79}a^{25}+\frac{64\!\cdots\!15}{12\!\cdots\!93}a^{24}+\frac{20\!\cdots\!47}{14\!\cdots\!16}a^{23}+\frac{29\!\cdots\!73}{14\!\cdots\!16}a^{22}-\frac{24\!\cdots\!85}{14\!\cdots\!16}a^{21}-\frac{78\!\cdots\!37}{14\!\cdots\!16}a^{20}-\frac{15\!\cdots\!43}{74\!\cdots\!58}a^{19}-\frac{51\!\cdots\!61}{14\!\cdots\!16}a^{18}-\frac{58\!\cdots\!27}{74\!\cdots\!58}a^{17}-\frac{18\!\cdots\!57}{14\!\cdots\!16}a^{16}-\frac{33\!\cdots\!45}{27\!\cdots\!72}a^{15}+\frac{76\!\cdots\!54}{37\!\cdots\!79}a^{14}+\frac{15\!\cdots\!45}{74\!\cdots\!58}a^{13}+\frac{54\!\cdots\!59}{14\!\cdots\!16}a^{12}-\frac{20\!\cdots\!89}{74\!\cdots\!58}a^{11}-\frac{37\!\cdots\!01}{24\!\cdots\!86}a^{10}-\frac{27\!\cdots\!97}{74\!\cdots\!58}a^{9}+\frac{26\!\cdots\!81}{14\!\cdots\!16}a^{8}+\frac{62\!\cdots\!95}{14\!\cdots\!16}a^{7}+\frac{12\!\cdots\!73}{49\!\cdots\!72}a^{6}-\frac{66\!\cdots\!77}{49\!\cdots\!72}a^{5}-\frac{54\!\cdots\!05}{74\!\cdots\!58}a^{4}+\frac{37\!\cdots\!21}{14\!\cdots\!16}a^{3}-\frac{19\!\cdots\!73}{12\!\cdots\!93}a^{2}+\frac{57\!\cdots\!93}{35\!\cdots\!68}a+\frac{58\!\cdots\!47}{88\!\cdots\!54}$, $\frac{1}{15\!\cdots\!96}a^{31}+\frac{17}{52\!\cdots\!32}a^{30}+\frac{2695}{15\!\cdots\!96}a^{29}-\frac{81\!\cdots\!85}{52\!\cdots\!32}a^{28}-\frac{12\!\cdots\!27}{78\!\cdots\!48}a^{27}-\frac{41\!\cdots\!97}{39\!\cdots\!74}a^{26}+\frac{12\!\cdots\!23}{15\!\cdots\!96}a^{25}-\frac{55\!\cdots\!29}{13\!\cdots\!58}a^{24}+\frac{13\!\cdots\!13}{78\!\cdots\!48}a^{23}+\frac{56\!\cdots\!83}{78\!\cdots\!48}a^{22}+\frac{62\!\cdots\!63}{15\!\cdots\!96}a^{21}-\frac{95\!\cdots\!27}{52\!\cdots\!32}a^{20}-\frac{82\!\cdots\!93}{52\!\cdots\!32}a^{19}+\frac{85\!\cdots\!39}{15\!\cdots\!96}a^{18}-\frac{36\!\cdots\!97}{26\!\cdots\!16}a^{17}+\frac{61\!\cdots\!27}{29\!\cdots\!32}a^{16}-\frac{15\!\cdots\!34}{65\!\cdots\!29}a^{15}+\frac{16\!\cdots\!03}{15\!\cdots\!96}a^{14}+\frac{10\!\cdots\!99}{52\!\cdots\!32}a^{13}+\frac{67\!\cdots\!74}{17\!\cdots\!99}a^{12}+\frac{63\!\cdots\!96}{19\!\cdots\!87}a^{11}-\frac{38\!\cdots\!13}{15\!\cdots\!96}a^{10}+\frac{17\!\cdots\!21}{39\!\cdots\!74}a^{9}-\frac{24\!\cdots\!26}{19\!\cdots\!87}a^{8}-\frac{16\!\cdots\!84}{19\!\cdots\!87}a^{7}-\frac{85\!\cdots\!05}{52\!\cdots\!32}a^{6}+\frac{77\!\cdots\!81}{15\!\cdots\!96}a^{5}-\frac{22\!\cdots\!59}{15\!\cdots\!96}a^{4}-\frac{74\!\cdots\!27}{15\!\cdots\!96}a^{3}+\frac{20\!\cdots\!05}{49\!\cdots\!72}a^{2}+\frac{14\!\cdots\!76}{69\!\cdots\!43}a-\frac{28\!\cdots\!33}{10\!\cdots\!48}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{20}\times C_{40}$, which has order $800$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{1217119931911967502527970860480693}{19103607309758759817573746423121315778684} a^{31} + \frac{529949397406022444320176909569853}{19103607309758759817573746423121315778684} a^{30} + \frac{15170704205450168021556094376403765}{19103607309758759817573746423121315778684} a^{29} - \frac{6510871315720762181790475295058899}{19103607309758759817573746423121315778684} a^{28} - \frac{28539628480119096136977290268832520}{4775901827439689954393436605780328944671} a^{27} + \frac{253980313954092778064719791661071947}{9551803654879379908786873211560657889342} a^{26} + \frac{541348593906996899195996233372651811}{19103607309758759817573746423121315778684} a^{25} - \frac{1265068675720934973273197163556798656}{4775901827439689954393436605780328944671} a^{24} - \frac{426537845054919703715610210810159108}{4775901827439689954393436605780328944671} a^{23} + \frac{6196494182384986802364796023099411725}{4775901827439689954393436605780328944671} a^{22} - \frac{39391990162572868439326035989945188193}{19103607309758759817573746423121315778684} a^{21} - \frac{36302167205796201180117709683351887297}{19103607309758759817573746423121315778684} a^{20} + \frac{295335784347757856244291424951051124059}{19103607309758759817573746423121315778684} a^{19} - \frac{752690108351001170922908049475019585683}{19103607309758759817573746423121315778684} a^{18} + \frac{47299558648570761856631072512326735879}{4775901827439689954393436605780328944671} a^{17} + \frac{3832311177664687297854193781613613178809}{19103607309758759817573746423121315778684} a^{16} - \frac{2025436391216772173150129789688779959411}{4775901827439689954393436605780328944671} a^{15} - \frac{1917832439017570824998255556360538653815}{19103607309758759817573746423121315778684} a^{14} + \frac{17268144577871543651279087494541643651453}{19103607309758759817573746423121315778684} a^{13} - \frac{16277171580455818487678143019442237262263}{9551803654879379908786873211560657889342} a^{12} + \frac{762869465357261723789326072052338932901}{9551803654879379908786873211560657889342} a^{11} + \frac{48146259113421891675557748866783612739491}{19103607309758759817573746423121315778684} a^{10} + \frac{3599527763879936773784403916923860321412}{4775901827439689954393436605780328944671} a^{9} - \frac{37583223052364503208132322197699388237497}{9551803654879379908786873211560657889342} a^{8} + \frac{84455173517099426581332845742554336685861}{9551803654879379908786873211560657889342} a^{7} - \frac{104710245712381482495586943663507382753619}{19103607309758759817573746423121315778684} a^{6} - \frac{42277470675529955995927849656555932618371}{19103607309758759817573746423121315778684} a^{5} - \frac{18774044300485757411729456801842636937425}{19103607309758759817573746423121315778684} a^{4} - \frac{650815289346223872457060854741942954361}{360445420938844524859882007983421052428} a^{3} + \frac{5456859331257156905695572126963148642717}{4775901827439689954393436605780328944671} a^{2} - \frac{2266690083313810696203952458534633434}{1700214249711530777640952867846325719} a - \frac{3082438277908978956521356705095186307}{6800856998846123110563811471385302876} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{13\!\cdots\!49}{38\!\cdots\!68}a^{31}+\frac{22\!\cdots\!05}{38\!\cdots\!68}a^{30}-\frac{22\!\cdots\!11}{38\!\cdots\!68}a^{29}-\frac{16\!\cdots\!65}{38\!\cdots\!68}a^{28}+\frac{83\!\cdots\!55}{19\!\cdots\!84}a^{27}-\frac{18\!\cdots\!35}{19\!\cdots\!84}a^{26}-\frac{19\!\cdots\!77}{38\!\cdots\!68}a^{25}+\frac{32\!\cdots\!79}{19\!\cdots\!84}a^{24}+\frac{25\!\cdots\!01}{95\!\cdots\!42}a^{23}-\frac{16\!\cdots\!39}{19\!\cdots\!84}a^{22}+\frac{21\!\cdots\!23}{38\!\cdots\!68}a^{21}+\frac{17\!\cdots\!89}{38\!\cdots\!68}a^{20}-\frac{48\!\cdots\!55}{38\!\cdots\!68}a^{19}+\frac{59\!\cdots\!15}{38\!\cdots\!68}a^{18}+\frac{77\!\cdots\!27}{19\!\cdots\!84}a^{17}-\frac{73\!\cdots\!91}{38\!\cdots\!68}a^{16}+\frac{34\!\cdots\!05}{19\!\cdots\!84}a^{15}+\frac{18\!\cdots\!13}{38\!\cdots\!68}a^{14}-\frac{18\!\cdots\!07}{19\!\cdots\!32}a^{13}+\frac{10\!\cdots\!95}{95\!\cdots\!42}a^{12}+\frac{11\!\cdots\!93}{19\!\cdots\!84}a^{11}-\frac{64\!\cdots\!69}{38\!\cdots\!68}a^{10}-\frac{53\!\cdots\!29}{19\!\cdots\!84}a^{9}+\frac{87\!\cdots\!09}{19\!\cdots\!84}a^{8}-\frac{32\!\cdots\!79}{47\!\cdots\!71}a^{7}+\frac{44\!\cdots\!57}{38\!\cdots\!68}a^{6}+\frac{17\!\cdots\!51}{38\!\cdots\!68}a^{5}+\frac{37\!\cdots\!29}{38\!\cdots\!68}a^{4}+\frac{17\!\cdots\!41}{72\!\cdots\!56}a^{3}-\frac{74\!\cdots\!61}{19\!\cdots\!84}a^{2}+\frac{51\!\cdots\!17}{36\!\cdots\!28}a+\frac{12\!\cdots\!31}{13\!\cdots\!52}$, $\frac{13\!\cdots\!03}{52\!\cdots\!32}a^{31}-\frac{34\!\cdots\!75}{52\!\cdots\!32}a^{30}-\frac{95\!\cdots\!09}{52\!\cdots\!32}a^{29}+\frac{26\!\cdots\!27}{52\!\cdots\!32}a^{28}+\frac{18\!\cdots\!91}{13\!\cdots\!58}a^{27}-\frac{35\!\cdots\!03}{26\!\cdots\!16}a^{26}+\frac{87\!\cdots\!41}{52\!\cdots\!32}a^{25}+\frac{46\!\cdots\!59}{65\!\cdots\!29}a^{24}-\frac{13\!\cdots\!07}{13\!\cdots\!58}a^{23}-\frac{90\!\cdots\!73}{26\!\cdots\!16}a^{22}+\frac{77\!\cdots\!09}{52\!\cdots\!32}a^{21}-\frac{11\!\cdots\!43}{52\!\cdots\!32}a^{20}-\frac{69\!\cdots\!59}{52\!\cdots\!32}a^{19}+\frac{88\!\cdots\!19}{52\!\cdots\!32}a^{18}-\frac{24\!\cdots\!71}{65\!\cdots\!29}a^{17}-\frac{27\!\cdots\!81}{98\!\cdots\!44}a^{16}+\frac{20\!\cdots\!85}{13\!\cdots\!58}a^{15}-\frac{12\!\cdots\!25}{52\!\cdots\!32}a^{14}+\frac{72\!\cdots\!23}{52\!\cdots\!32}a^{13}+\frac{49\!\cdots\!79}{26\!\cdots\!16}a^{12}-\frac{36\!\cdots\!57}{26\!\cdots\!16}a^{11}-\frac{46\!\cdots\!87}{52\!\cdots\!32}a^{10}+\frac{87\!\cdots\!45}{65\!\cdots\!29}a^{9}-\frac{28\!\cdots\!69}{26\!\cdots\!16}a^{8}-\frac{21\!\cdots\!39}{13\!\cdots\!58}a^{7}+\frac{51\!\cdots\!47}{52\!\cdots\!32}a^{6}+\frac{70\!\cdots\!43}{52\!\cdots\!32}a^{5}+\frac{92\!\cdots\!45}{52\!\cdots\!32}a^{4}-\frac{82\!\cdots\!75}{52\!\cdots\!32}a^{3}+\frac{18\!\cdots\!39}{24\!\cdots\!86}a^{2}+\frac{21\!\cdots\!03}{93\!\cdots\!24}a+\frac{88\!\cdots\!37}{35\!\cdots\!16}$, $\frac{54\!\cdots\!33}{26\!\cdots\!16}a^{31}-\frac{69\!\cdots\!47}{13\!\cdots\!58}a^{30}-\frac{37\!\cdots\!85}{26\!\cdots\!16}a^{29}+\frac{47\!\cdots\!91}{13\!\cdots\!58}a^{28}+\frac{31\!\cdots\!85}{26\!\cdots\!16}a^{27}-\frac{70\!\cdots\!90}{65\!\cdots\!29}a^{26}+\frac{25\!\cdots\!67}{18\!\cdots\!44}a^{25}+\frac{14\!\cdots\!55}{26\!\cdots\!16}a^{24}-\frac{41\!\cdots\!40}{65\!\cdots\!29}a^{23}-\frac{35\!\cdots\!41}{13\!\cdots\!58}a^{22}+\frac{29\!\cdots\!75}{26\!\cdots\!16}a^{21}-\frac{40\!\cdots\!65}{22\!\cdots\!01}a^{20}-\frac{29\!\cdots\!14}{65\!\cdots\!29}a^{19}+\frac{79\!\cdots\!86}{65\!\cdots\!29}a^{18}-\frac{75\!\cdots\!69}{26\!\cdots\!16}a^{17}+\frac{12\!\cdots\!21}{49\!\cdots\!72}a^{16}+\frac{28\!\cdots\!11}{26\!\cdots\!16}a^{15}-\frac{45\!\cdots\!15}{26\!\cdots\!16}a^{14}+\frac{21\!\cdots\!19}{13\!\cdots\!58}a^{13}-\frac{39\!\cdots\!73}{26\!\cdots\!16}a^{12}+\frac{91\!\cdots\!29}{13\!\cdots\!58}a^{11}-\frac{21\!\cdots\!55}{26\!\cdots\!16}a^{10}+\frac{24\!\cdots\!55}{26\!\cdots\!16}a^{9}-\frac{15\!\cdots\!91}{13\!\cdots\!58}a^{8}+\frac{10\!\cdots\!23}{13\!\cdots\!58}a^{7}-\frac{76\!\cdots\!45}{26\!\cdots\!16}a^{6}+\frac{66\!\cdots\!11}{65\!\cdots\!29}a^{5}+\frac{43\!\cdots\!21}{13\!\cdots\!58}a^{4}-\frac{38\!\cdots\!11}{13\!\cdots\!58}a^{3}+\frac{15\!\cdots\!13}{93\!\cdots\!24}a^{2}-\frac{59\!\cdots\!81}{46\!\cdots\!62}a+\frac{51\!\cdots\!93}{17\!\cdots\!08}$, $\frac{51\!\cdots\!03}{19\!\cdots\!87}a^{31}-\frac{14\!\cdots\!91}{19\!\cdots\!87}a^{30}-\frac{12\!\cdots\!57}{78\!\cdots\!48}a^{29}+\frac{42\!\cdots\!81}{78\!\cdots\!48}a^{28}+\frac{52\!\cdots\!59}{39\!\cdots\!74}a^{27}-\frac{46\!\cdots\!69}{33\!\cdots\!04}a^{26}+\frac{14\!\cdots\!11}{65\!\cdots\!29}a^{25}+\frac{49\!\cdots\!17}{78\!\cdots\!48}a^{24}-\frac{87\!\cdots\!37}{78\!\cdots\!48}a^{23}-\frac{12\!\cdots\!67}{39\!\cdots\!74}a^{22}+\frac{20\!\cdots\!43}{13\!\cdots\!58}a^{21}-\frac{21\!\cdots\!43}{78\!\cdots\!48}a^{20}+\frac{37\!\cdots\!11}{39\!\cdots\!74}a^{19}+\frac{63\!\cdots\!63}{39\!\cdots\!74}a^{18}-\frac{16\!\cdots\!49}{39\!\cdots\!74}a^{17}+\frac{21\!\cdots\!71}{14\!\cdots\!16}a^{16}+\frac{38\!\cdots\!93}{27\!\cdots\!12}a^{15}-\frac{21\!\cdots\!09}{78\!\cdots\!48}a^{14}+\frac{21\!\cdots\!71}{78\!\cdots\!48}a^{13}-\frac{14\!\cdots\!85}{39\!\cdots\!74}a^{12}-\frac{77\!\cdots\!19}{78\!\cdots\!48}a^{11}-\frac{36\!\cdots\!09}{39\!\cdots\!74}a^{10}+\frac{12\!\cdots\!41}{78\!\cdots\!48}a^{9}-\frac{13\!\cdots\!85}{78\!\cdots\!48}a^{8}+\frac{23\!\cdots\!72}{19\!\cdots\!87}a^{7}-\frac{17\!\cdots\!91}{39\!\cdots\!74}a^{6}+\frac{14\!\cdots\!41}{27\!\cdots\!12}a^{5}+\frac{31\!\cdots\!39}{13\!\cdots\!58}a^{4}-\frac{65\!\cdots\!99}{65\!\cdots\!29}a^{3}+\frac{36\!\cdots\!19}{37\!\cdots\!79}a^{2}-\frac{52\!\cdots\!43}{27\!\cdots\!72}a+\frac{44\!\cdots\!97}{15\!\cdots\!16}$, $\frac{25\!\cdots\!61}{54\!\cdots\!24}a^{31}-\frac{79\!\cdots\!93}{54\!\cdots\!24}a^{30}-\frac{13\!\cdots\!17}{54\!\cdots\!24}a^{29}+\frac{57\!\cdots\!57}{54\!\cdots\!24}a^{28}+\frac{54\!\cdots\!77}{27\!\cdots\!12}a^{27}-\frac{58\!\cdots\!60}{22\!\cdots\!01}a^{26}+\frac{81\!\cdots\!73}{18\!\cdots\!08}a^{25}+\frac{69\!\cdots\!59}{67\!\cdots\!03}a^{24}-\frac{64\!\cdots\!99}{27\!\cdots\!12}a^{23}-\frac{12\!\cdots\!29}{27\!\cdots\!12}a^{22}+\frac{52\!\cdots\!37}{18\!\cdots\!08}a^{21}-\frac{30\!\cdots\!09}{54\!\cdots\!24}a^{20}+\frac{61\!\cdots\!21}{54\!\cdots\!24}a^{19}+\frac{16\!\cdots\!87}{54\!\cdots\!24}a^{18}-\frac{23\!\cdots\!51}{27\!\cdots\!12}a^{17}+\frac{47\!\cdots\!59}{10\!\cdots\!08}a^{16}+\frac{17\!\cdots\!34}{67\!\cdots\!03}a^{15}-\frac{32\!\cdots\!89}{54\!\cdots\!24}a^{14}+\frac{34\!\cdots\!49}{54\!\cdots\!24}a^{13}-\frac{37\!\cdots\!42}{67\!\cdots\!03}a^{12}-\frac{39\!\cdots\!31}{13\!\cdots\!06}a^{11}-\frac{72\!\cdots\!33}{54\!\cdots\!24}a^{10}+\frac{21\!\cdots\!94}{67\!\cdots\!03}a^{9}-\frac{27\!\cdots\!92}{67\!\cdots\!03}a^{8}+\frac{15\!\cdots\!10}{67\!\cdots\!03}a^{7}+\frac{45\!\cdots\!45}{54\!\cdots\!24}a^{6}-\frac{39\!\cdots\!31}{54\!\cdots\!24}a^{5}+\frac{19\!\cdots\!91}{18\!\cdots\!08}a^{4}-\frac{19\!\cdots\!77}{18\!\cdots\!08}a^{3}+\frac{41\!\cdots\!51}{96\!\cdots\!68}a^{2}+\frac{27\!\cdots\!35}{45\!\cdots\!39}a-\frac{30\!\cdots\!31}{12\!\cdots\!04}$, $\frac{11\!\cdots\!67}{15\!\cdots\!96}a^{31}-\frac{20\!\cdots\!57}{15\!\cdots\!96}a^{30}-\frac{27\!\cdots\!45}{52\!\cdots\!32}a^{29}+\frac{12\!\cdots\!77}{15\!\cdots\!96}a^{28}+\frac{25\!\cdots\!88}{65\!\cdots\!29}a^{27}-\frac{65\!\cdots\!78}{19\!\cdots\!87}a^{26}+\frac{42\!\cdots\!17}{15\!\cdots\!96}a^{25}+\frac{13\!\cdots\!29}{78\!\cdots\!48}a^{24}-\frac{94\!\cdots\!29}{78\!\cdots\!48}a^{23}-\frac{58\!\cdots\!21}{78\!\cdots\!48}a^{22}+\frac{51\!\cdots\!49}{15\!\cdots\!96}a^{21}-\frac{26\!\cdots\!47}{52\!\cdots\!32}a^{20}-\frac{18\!\cdots\!93}{52\!\cdots\!32}a^{19}+\frac{22\!\cdots\!97}{52\!\cdots\!32}a^{18}-\frac{32\!\cdots\!01}{39\!\cdots\!74}a^{17}-\frac{18\!\cdots\!61}{98\!\cdots\!44}a^{16}+\frac{31\!\cdots\!69}{90\!\cdots\!04}a^{15}-\frac{28\!\cdots\!25}{52\!\cdots\!32}a^{14}+\frac{87\!\cdots\!93}{15\!\cdots\!96}a^{13}+\frac{16\!\cdots\!75}{26\!\cdots\!16}a^{12}-\frac{10\!\cdots\!84}{19\!\cdots\!87}a^{11}-\frac{30\!\cdots\!67}{15\!\cdots\!96}a^{10}+\frac{19\!\cdots\!49}{78\!\cdots\!48}a^{9}-\frac{79\!\cdots\!87}{19\!\cdots\!87}a^{8}-\frac{11\!\cdots\!04}{65\!\cdots\!29}a^{7}+\frac{56\!\cdots\!91}{15\!\cdots\!96}a^{6}-\frac{30\!\cdots\!41}{18\!\cdots\!08}a^{5}+\frac{47\!\cdots\!13}{15\!\cdots\!96}a^{4}+\frac{22\!\cdots\!01}{15\!\cdots\!96}a^{3}+\frac{57\!\cdots\!57}{74\!\cdots\!58}a^{2}+\frac{42\!\cdots\!28}{23\!\cdots\!81}a+\frac{51\!\cdots\!11}{35\!\cdots\!16}$, $\frac{46\!\cdots\!61}{39\!\cdots\!74}a^{31}+\frac{25\!\cdots\!83}{78\!\cdots\!48}a^{30}-\frac{53\!\cdots\!96}{65\!\cdots\!29}a^{29}-\frac{11\!\cdots\!15}{39\!\cdots\!74}a^{28}+\frac{25\!\cdots\!41}{39\!\cdots\!74}a^{27}+\frac{44\!\cdots\!40}{24\!\cdots\!53}a^{26}-\frac{67\!\cdots\!61}{39\!\cdots\!74}a^{25}+\frac{10\!\cdots\!54}{65\!\cdots\!29}a^{24}+\frac{14\!\cdots\!61}{13\!\cdots\!06}a^{23}-\frac{33\!\cdots\!54}{32\!\cdots\!71}a^{22}-\frac{94\!\cdots\!33}{19\!\cdots\!87}a^{21}+\frac{33\!\cdots\!73}{19\!\cdots\!87}a^{20}-\frac{40\!\cdots\!36}{19\!\cdots\!87}a^{19}-\frac{16\!\cdots\!20}{65\!\cdots\!29}a^{18}+\frac{41\!\cdots\!25}{19\!\cdots\!87}a^{17}-\frac{14\!\cdots\!21}{37\!\cdots\!79}a^{16}-\frac{43\!\cdots\!53}{19\!\cdots\!87}a^{15}+\frac{13\!\cdots\!54}{65\!\cdots\!29}a^{14}-\frac{90\!\cdots\!47}{39\!\cdots\!74}a^{13}+\frac{21\!\cdots\!57}{39\!\cdots\!74}a^{12}+\frac{68\!\cdots\!26}{19\!\cdots\!87}a^{11}-\frac{70\!\cdots\!59}{39\!\cdots\!74}a^{10}-\frac{22\!\cdots\!93}{19\!\cdots\!87}a^{9}+\frac{15\!\cdots\!23}{13\!\cdots\!58}a^{8}-\frac{46\!\cdots\!53}{65\!\cdots\!29}a^{7}-\frac{13\!\cdots\!94}{14\!\cdots\!33}a^{6}+\frac{32\!\cdots\!55}{19\!\cdots\!87}a^{5}+\frac{42\!\cdots\!14}{19\!\cdots\!87}a^{4}+\frac{59\!\cdots\!36}{19\!\cdots\!87}a^{3}-\frac{19\!\cdots\!01}{12\!\cdots\!93}a^{2}-\frac{42\!\cdots\!59}{46\!\cdots\!62}a+\frac{10\!\cdots\!49}{18\!\cdots\!56}$, $\frac{14\!\cdots\!33}{79\!\cdots\!04}a^{31}+\frac{21\!\cdots\!37}{15\!\cdots\!96}a^{30}-\frac{87\!\cdots\!09}{15\!\cdots\!96}a^{29}-\frac{17\!\cdots\!77}{15\!\cdots\!96}a^{28}+\frac{32\!\cdots\!73}{78\!\cdots\!48}a^{27}+\frac{15\!\cdots\!87}{90\!\cdots\!04}a^{26}-\frac{54\!\cdots\!79}{66\!\cdots\!08}a^{25}+\frac{28\!\cdots\!24}{19\!\cdots\!87}a^{24}+\frac{36\!\cdots\!45}{78\!\cdots\!48}a^{23}-\frac{15\!\cdots\!80}{19\!\cdots\!87}a^{22}-\frac{80\!\cdots\!07}{52\!\cdots\!32}a^{21}+\frac{12\!\cdots\!63}{15\!\cdots\!96}a^{20}-\frac{22\!\cdots\!15}{15\!\cdots\!96}a^{19}-\frac{13\!\cdots\!43}{15\!\cdots\!96}a^{18}+\frac{17\!\cdots\!57}{19\!\cdots\!87}a^{17}-\frac{70\!\cdots\!39}{29\!\cdots\!32}a^{16}+\frac{31\!\cdots\!89}{78\!\cdots\!48}a^{15}+\frac{14\!\cdots\!91}{15\!\cdots\!96}a^{14}-\frac{21\!\cdots\!49}{15\!\cdots\!96}a^{13}+\frac{37\!\cdots\!79}{39\!\cdots\!74}a^{12}+\frac{98\!\cdots\!31}{78\!\cdots\!48}a^{11}-\frac{23\!\cdots\!39}{15\!\cdots\!96}a^{10}-\frac{20\!\cdots\!87}{39\!\cdots\!74}a^{9}+\frac{12\!\cdots\!52}{19\!\cdots\!87}a^{8}-\frac{60\!\cdots\!19}{78\!\cdots\!48}a^{7}-\frac{25\!\cdots\!39}{15\!\cdots\!96}a^{6}+\frac{12\!\cdots\!37}{15\!\cdots\!96}a^{5}+\frac{63\!\cdots\!43}{52\!\cdots\!32}a^{4}+\frac{38\!\cdots\!65}{52\!\cdots\!32}a^{3}+\frac{12\!\cdots\!60}{37\!\cdots\!79}a^{2}+\frac{26\!\cdots\!61}{13\!\cdots\!86}a+\frac{90\!\cdots\!09}{35\!\cdots\!16}$, $\frac{19\!\cdots\!29}{26\!\cdots\!16}a^{31}-\frac{32\!\cdots\!57}{78\!\cdots\!48}a^{30}+\frac{20\!\cdots\!18}{19\!\cdots\!87}a^{29}+\frac{11\!\cdots\!77}{39\!\cdots\!74}a^{28}-\frac{37\!\cdots\!19}{78\!\cdots\!48}a^{27}-\frac{39\!\cdots\!01}{78\!\cdots\!48}a^{26}+\frac{13\!\cdots\!39}{78\!\cdots\!48}a^{25}+\frac{22\!\cdots\!53}{78\!\cdots\!48}a^{24}-\frac{33\!\cdots\!87}{39\!\cdots\!74}a^{23}-\frac{17\!\cdots\!23}{78\!\cdots\!48}a^{22}+\frac{27\!\cdots\!25}{39\!\cdots\!74}a^{21}-\frac{51\!\cdots\!65}{26\!\cdots\!16}a^{20}+\frac{49\!\cdots\!69}{26\!\cdots\!16}a^{19}+\frac{34\!\cdots\!82}{65\!\cdots\!29}a^{18}-\frac{32\!\cdots\!77}{13\!\cdots\!58}a^{17}+\frac{52\!\cdots\!59}{14\!\cdots\!16}a^{16}+\frac{23\!\cdots\!58}{65\!\cdots\!29}a^{15}-\frac{26\!\cdots\!51}{13\!\cdots\!58}a^{14}+\frac{18\!\cdots\!65}{65\!\cdots\!29}a^{13}-\frac{12\!\cdots\!53}{78\!\cdots\!48}a^{12}-\frac{25\!\cdots\!13}{26\!\cdots\!16}a^{11}-\frac{12\!\cdots\!89}{78\!\cdots\!48}a^{10}+\frac{86\!\cdots\!15}{78\!\cdots\!48}a^{9}-\frac{63\!\cdots\!09}{39\!\cdots\!74}a^{8}+\frac{10\!\cdots\!99}{78\!\cdots\!48}a^{7}-\frac{43\!\cdots\!68}{19\!\cdots\!87}a^{6}-\frac{13\!\cdots\!47}{27\!\cdots\!12}a^{5}+\frac{60\!\cdots\!91}{27\!\cdots\!12}a^{4}-\frac{20\!\cdots\!67}{39\!\cdots\!74}a^{3}+\frac{22\!\cdots\!13}{74\!\cdots\!58}a^{2}+\frac{72\!\cdots\!67}{69\!\cdots\!43}a-\frac{12\!\cdots\!31}{52\!\cdots\!24}$, $\frac{36\!\cdots\!19}{29\!\cdots\!32}a^{31}-\frac{22\!\cdots\!99}{29\!\cdots\!32}a^{30}-\frac{46\!\cdots\!23}{29\!\cdots\!32}a^{29}+\frac{83\!\cdots\!83}{98\!\cdots\!44}a^{28}+\frac{29\!\cdots\!37}{24\!\cdots\!86}a^{27}-\frac{26\!\cdots\!79}{49\!\cdots\!72}a^{26}-\frac{15\!\cdots\!01}{29\!\cdots\!32}a^{25}+\frac{65\!\cdots\!36}{12\!\cdots\!93}a^{24}+\frac{55\!\cdots\!48}{37\!\cdots\!79}a^{23}-\frac{13\!\cdots\!31}{49\!\cdots\!72}a^{22}+\frac{39\!\cdots\!21}{98\!\cdots\!44}a^{21}+\frac{10\!\cdots\!55}{29\!\cdots\!32}a^{20}-\frac{88\!\cdots\!25}{29\!\cdots\!32}a^{19}+\frac{76\!\cdots\!03}{98\!\cdots\!44}a^{18}-\frac{17\!\cdots\!23}{74\!\cdots\!58}a^{17}-\frac{34\!\cdots\!13}{87\!\cdots\!88}a^{16}+\frac{62\!\cdots\!43}{74\!\cdots\!58}a^{15}+\frac{21\!\cdots\!91}{98\!\cdots\!44}a^{14}-\frac{53\!\cdots\!55}{29\!\cdots\!32}a^{13}+\frac{51\!\cdots\!51}{17\!\cdots\!68}a^{12}-\frac{11\!\cdots\!49}{49\!\cdots\!72}a^{11}-\frac{14\!\cdots\!33}{29\!\cdots\!32}a^{10}-\frac{59\!\cdots\!96}{37\!\cdots\!79}a^{9}+\frac{39\!\cdots\!81}{49\!\cdots\!72}a^{8}-\frac{52\!\cdots\!99}{37\!\cdots\!79}a^{7}+\frac{11\!\cdots\!71}{98\!\cdots\!44}a^{6}+\frac{45\!\cdots\!95}{98\!\cdots\!44}a^{5}+\frac{19\!\cdots\!29}{98\!\cdots\!44}a^{4}+\frac{20\!\cdots\!19}{55\!\cdots\!44}a^{3}-\frac{10\!\cdots\!76}{12\!\cdots\!93}a^{2}+\frac{35\!\cdots\!26}{13\!\cdots\!31}a+\frac{98\!\cdots\!57}{10\!\cdots\!48}$, $\frac{14\!\cdots\!75}{15\!\cdots\!96}a^{31}-\frac{29\!\cdots\!11}{15\!\cdots\!96}a^{30}-\frac{41\!\cdots\!73}{52\!\cdots\!32}a^{29}+\frac{26\!\cdots\!31}{18\!\cdots\!08}a^{28}+\frac{88\!\cdots\!24}{14\!\cdots\!33}a^{27}-\frac{18\!\cdots\!47}{39\!\cdots\!74}a^{26}+\frac{51\!\cdots\!85}{15\!\cdots\!96}a^{25}+\frac{22\!\cdots\!07}{78\!\cdots\!48}a^{24}-\frac{57\!\cdots\!67}{26\!\cdots\!16}a^{23}-\frac{37\!\cdots\!27}{26\!\cdots\!16}a^{22}+\frac{71\!\cdots\!01}{15\!\cdots\!96}a^{21}-\frac{77\!\cdots\!37}{15\!\cdots\!96}a^{20}-\frac{14\!\cdots\!67}{15\!\cdots\!96}a^{19}+\frac{92\!\cdots\!55}{15\!\cdots\!96}a^{18}-\frac{13\!\cdots\!45}{13\!\cdots\!58}a^{17}-\frac{83\!\cdots\!05}{98\!\cdots\!44}a^{16}+\frac{44\!\cdots\!31}{78\!\cdots\!48}a^{15}-\frac{91\!\cdots\!55}{15\!\cdots\!96}a^{14}+\frac{17\!\cdots\!95}{52\!\cdots\!32}a^{13}+\frac{25\!\cdots\!35}{26\!\cdots\!16}a^{12}-\frac{45\!\cdots\!87}{13\!\cdots\!58}a^{11}-\frac{52\!\cdots\!11}{15\!\cdots\!96}a^{10}+\frac{98\!\cdots\!55}{33\!\cdots\!04}a^{9}-\frac{89\!\cdots\!30}{65\!\cdots\!29}a^{8}-\frac{17\!\cdots\!90}{65\!\cdots\!29}a^{7}+\frac{22\!\cdots\!97}{52\!\cdots\!32}a^{6}+\frac{25\!\cdots\!53}{15\!\cdots\!96}a^{5}+\frac{26\!\cdots\!17}{15\!\cdots\!96}a^{4}-\frac{30\!\cdots\!27}{15\!\cdots\!96}a^{3}-\frac{55\!\cdots\!67}{74\!\cdots\!58}a^{2}+\frac{11\!\cdots\!15}{69\!\cdots\!43}a+\frac{65\!\cdots\!15}{10\!\cdots\!48}$, $\frac{99\!\cdots\!84}{19\!\cdots\!87}a^{31}-\frac{58\!\cdots\!01}{67\!\cdots\!03}a^{30}-\frac{14\!\cdots\!69}{39\!\cdots\!74}a^{29}+\frac{96\!\cdots\!34}{19\!\cdots\!87}a^{28}+\frac{21\!\cdots\!11}{78\!\cdots\!48}a^{27}-\frac{60\!\cdots\!79}{26\!\cdots\!16}a^{26}+\frac{44\!\cdots\!83}{26\!\cdots\!16}a^{25}+\frac{90\!\cdots\!19}{78\!\cdots\!48}a^{24}-\frac{62\!\cdots\!69}{13\!\cdots\!58}a^{23}-\frac{40\!\cdots\!81}{78\!\cdots\!48}a^{22}+\frac{42\!\cdots\!33}{19\!\cdots\!87}a^{21}-\frac{26\!\cdots\!57}{78\!\cdots\!48}a^{20}-\frac{35\!\cdots\!85}{33\!\cdots\!04}a^{19}+\frac{10\!\cdots\!13}{39\!\cdots\!74}a^{18}-\frac{21\!\cdots\!11}{39\!\cdots\!74}a^{17}-\frac{26\!\cdots\!51}{14\!\cdots\!16}a^{16}+\frac{26\!\cdots\!21}{13\!\cdots\!58}a^{15}-\frac{62\!\cdots\!95}{19\!\cdots\!87}a^{14}+\frac{19\!\cdots\!27}{39\!\cdots\!74}a^{13}+\frac{29\!\cdots\!13}{78\!\cdots\!48}a^{12}+\frac{18\!\cdots\!93}{78\!\cdots\!48}a^{11}-\frac{70\!\cdots\!55}{78\!\cdots\!48}a^{10}+\frac{41\!\cdots\!87}{26\!\cdots\!16}a^{9}-\frac{12\!\cdots\!93}{39\!\cdots\!74}a^{8}+\frac{78\!\cdots\!29}{78\!\cdots\!48}a^{7}-\frac{26\!\cdots\!43}{39\!\cdots\!74}a^{6}-\frac{89\!\cdots\!13}{78\!\cdots\!48}a^{5}+\frac{34\!\cdots\!45}{26\!\cdots\!16}a^{4}-\frac{34\!\cdots\!95}{65\!\cdots\!29}a^{3}+\frac{24\!\cdots\!35}{74\!\cdots\!58}a^{2}-\frac{57\!\cdots\!59}{27\!\cdots\!72}a-\frac{40\!\cdots\!41}{88\!\cdots\!54}$, $\frac{25\!\cdots\!73}{98\!\cdots\!44}a^{31}-\frac{13\!\cdots\!19}{98\!\cdots\!44}a^{30}-\frac{62\!\cdots\!37}{98\!\cdots\!44}a^{29}+\frac{10\!\cdots\!47}{98\!\cdots\!44}a^{28}+\frac{10\!\cdots\!19}{14\!\cdots\!16}a^{27}-\frac{26\!\cdots\!69}{14\!\cdots\!16}a^{26}+\frac{15\!\cdots\!91}{29\!\cdots\!32}a^{25}+\frac{36\!\cdots\!29}{74\!\cdots\!58}a^{24}-\frac{42\!\cdots\!09}{14\!\cdots\!16}a^{23}-\frac{31\!\cdots\!02}{12\!\cdots\!93}a^{22}+\frac{77\!\cdots\!03}{34\!\cdots\!36}a^{21}-\frac{54\!\cdots\!29}{98\!\cdots\!44}a^{20}+\frac{10\!\cdots\!87}{29\!\cdots\!32}a^{19}+\frac{63\!\cdots\!39}{29\!\cdots\!32}a^{18}-\frac{52\!\cdots\!17}{65\!\cdots\!66}a^{17}+\frac{74\!\cdots\!89}{98\!\cdots\!44}a^{16}+\frac{28\!\cdots\!85}{14\!\cdots\!16}a^{15}-\frac{17\!\cdots\!99}{29\!\cdots\!32}a^{14}+\frac{19\!\cdots\!09}{29\!\cdots\!32}a^{13}-\frac{76\!\cdots\!19}{24\!\cdots\!86}a^{12}-\frac{12\!\cdots\!79}{14\!\cdots\!16}a^{11}-\frac{16\!\cdots\!25}{29\!\cdots\!32}a^{10}+\frac{12\!\cdots\!96}{37\!\cdots\!79}a^{9}-\frac{45\!\cdots\!10}{12\!\cdots\!93}a^{8}+\frac{16\!\cdots\!53}{49\!\cdots\!72}a^{7}+\frac{29\!\cdots\!73}{98\!\cdots\!44}a^{6}-\frac{58\!\cdots\!75}{21\!\cdots\!88}a^{5}-\frac{19\!\cdots\!01}{29\!\cdots\!32}a^{4}-\frac{11\!\cdots\!35}{55\!\cdots\!44}a^{3}+\frac{14\!\cdots\!25}{65\!\cdots\!66}a^{2}+\frac{36\!\cdots\!85}{27\!\cdots\!72}a+\frac{46\!\cdots\!79}{35\!\cdots\!16}$, $\frac{83\!\cdots\!27}{39\!\cdots\!74}a^{31}-\frac{29\!\cdots\!05}{39\!\cdots\!74}a^{30}-\frac{19\!\cdots\!62}{19\!\cdots\!87}a^{29}+\frac{45\!\cdots\!23}{78\!\cdots\!48}a^{28}+\frac{18\!\cdots\!55}{23\!\cdots\!32}a^{27}-\frac{98\!\cdots\!81}{78\!\cdots\!48}a^{26}+\frac{99\!\cdots\!35}{39\!\cdots\!52}a^{25}+\frac{30\!\cdots\!07}{65\!\cdots\!29}a^{24}-\frac{37\!\cdots\!65}{26\!\cdots\!16}a^{23}-\frac{39\!\cdots\!61}{19\!\cdots\!87}a^{22}+\frac{39\!\cdots\!77}{26\!\cdots\!16}a^{21}-\frac{23\!\cdots\!45}{78\!\cdots\!48}a^{20}+\frac{25\!\cdots\!27}{39\!\cdots\!74}a^{19}+\frac{30\!\cdots\!62}{19\!\cdots\!87}a^{18}-\frac{35\!\cdots\!25}{78\!\cdots\!48}a^{17}+\frac{20\!\cdots\!47}{74\!\cdots\!58}a^{16}+\frac{54\!\cdots\!07}{39\!\cdots\!74}a^{15}-\frac{13\!\cdots\!25}{39\!\cdots\!74}a^{14}+\frac{25\!\cdots\!81}{78\!\cdots\!48}a^{13}+\frac{48\!\cdots\!63}{78\!\cdots\!48}a^{12}-\frac{84\!\cdots\!31}{26\!\cdots\!16}a^{11}-\frac{14\!\cdots\!27}{26\!\cdots\!16}a^{10}+\frac{12\!\cdots\!13}{65\!\cdots\!29}a^{9}-\frac{15\!\cdots\!17}{78\!\cdots\!48}a^{8}+\frac{26\!\cdots\!53}{39\!\cdots\!74}a^{7}+\frac{90\!\cdots\!75}{78\!\cdots\!48}a^{6}-\frac{30\!\cdots\!27}{26\!\cdots\!16}a^{5}+\frac{27\!\cdots\!41}{19\!\cdots\!87}a^{4}-\frac{10\!\cdots\!20}{19\!\cdots\!87}a^{3}+\frac{16\!\cdots\!01}{49\!\cdots\!72}a^{2}+\frac{17\!\cdots\!18}{69\!\cdots\!43}a-\frac{30\!\cdots\!79}{88\!\cdots\!54}$, $\frac{12\!\cdots\!47}{54\!\cdots\!24}a^{31}-\frac{24\!\cdots\!31}{15\!\cdots\!96}a^{30}-\frac{37\!\cdots\!31}{15\!\cdots\!96}a^{29}+\frac{47\!\cdots\!33}{52\!\cdots\!32}a^{28}+\frac{71\!\cdots\!57}{39\!\cdots\!74}a^{27}-\frac{24\!\cdots\!01}{26\!\cdots\!16}a^{26}-\frac{86\!\cdots\!21}{15\!\cdots\!96}a^{25}+\frac{59\!\cdots\!71}{78\!\cdots\!48}a^{24}+\frac{27\!\cdots\!29}{78\!\cdots\!48}a^{23}-\frac{14\!\cdots\!57}{39\!\cdots\!74}a^{22}+\frac{36\!\cdots\!39}{52\!\cdots\!32}a^{21}-\frac{25\!\cdots\!97}{15\!\cdots\!96}a^{20}-\frac{17\!\cdots\!05}{52\!\cdots\!32}a^{19}+\frac{62\!\cdots\!95}{52\!\cdots\!32}a^{18}-\frac{69\!\cdots\!93}{78\!\cdots\!48}a^{17}-\frac{13\!\cdots\!33}{29\!\cdots\!32}a^{16}+\frac{72\!\cdots\!33}{65\!\cdots\!29}a^{15}-\frac{51\!\cdots\!17}{52\!\cdots\!32}a^{14}-\frac{14\!\cdots\!09}{15\!\cdots\!96}a^{13}+\frac{22\!\cdots\!01}{78\!\cdots\!48}a^{12}+\frac{56\!\cdots\!77}{78\!\cdots\!48}a^{11}-\frac{99\!\cdots\!29}{15\!\cdots\!96}a^{10}-\frac{21\!\cdots\!31}{78\!\cdots\!48}a^{9}+\frac{29\!\cdots\!11}{39\!\cdots\!74}a^{8}-\frac{11\!\cdots\!77}{78\!\cdots\!48}a^{7}+\frac{22\!\cdots\!15}{26\!\cdots\!68}a^{6}+\frac{54\!\cdots\!73}{15\!\cdots\!96}a^{5}+\frac{83\!\cdots\!07}{52\!\cdots\!32}a^{4}+\frac{17\!\cdots\!11}{15\!\cdots\!96}a^{3}+\frac{31\!\cdots\!25}{14\!\cdots\!16}a^{2}+\frac{48\!\cdots\!25}{27\!\cdots\!72}a-\frac{22\!\cdots\!27}{10\!\cdots\!48}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 15664142477642.164 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 15664142477642.164 \cdot 800}{10\cdot\sqrt{1075199861227118411720654551127625657377302646636962890625}}\cr\approx \mathstrut & 0.225491359820446 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 2*x^31 - 8*x^30 + 14*x^29 + 63*x^28 - 486*x^27 + 387*x^26 + 2813*x^25 - 1932*x^24 - 13702*x^23 + 47407*x^22 - 62094*x^21 - 62330*x^20 + 584480*x^19 - 1121097*x^18 - 487441*x^17 + 5274231*x^16 - 6441701*x^15 + 4479186*x^14 + 4910425*x^13 + 73936*x^12 - 31103793*x^11 + 29606989*x^10 - 37188866*x^9 - 1032078*x^8 + 18427375*x^7 + 9826086*x^6 + 38717700*x^5 - 4091466*x^4 + 4426189*x^3 + 7865200*x^2 + 5508449*x + 7890481)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 2*x^31 - 8*x^30 + 14*x^29 + 63*x^28 - 486*x^27 + 387*x^26 + 2813*x^25 - 1932*x^24 - 13702*x^23 + 47407*x^22 - 62094*x^21 - 62330*x^20 + 584480*x^19 - 1121097*x^18 - 487441*x^17 + 5274231*x^16 - 6441701*x^15 + 4479186*x^14 + 4910425*x^13 + 73936*x^12 - 31103793*x^11 + 29606989*x^10 - 37188866*x^9 - 1032078*x^8 + 18427375*x^7 + 9826086*x^6 + 38717700*x^5 - 4091466*x^4 + 4426189*x^3 + 7865200*x^2 + 5508449*x + 7890481, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 2*x^31 - 8*x^30 + 14*x^29 + 63*x^28 - 486*x^27 + 387*x^26 + 2813*x^25 - 1932*x^24 - 13702*x^23 + 47407*x^22 - 62094*x^21 - 62330*x^20 + 584480*x^19 - 1121097*x^18 - 487441*x^17 + 5274231*x^16 - 6441701*x^15 + 4479186*x^14 + 4910425*x^13 + 73936*x^12 - 31103793*x^11 + 29606989*x^10 - 37188866*x^9 - 1032078*x^8 + 18427375*x^7 + 9826086*x^6 + 38717700*x^5 - 4091466*x^4 + 4426189*x^3 + 7865200*x^2 + 5508449*x + 7890481);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 2*x^31 - 8*x^30 + 14*x^29 + 63*x^28 - 486*x^27 + 387*x^26 + 2813*x^25 - 1932*x^24 - 13702*x^23 + 47407*x^22 - 62094*x^21 - 62330*x^20 + 584480*x^19 - 1121097*x^18 - 487441*x^17 + 5274231*x^16 - 6441701*x^15 + 4479186*x^14 + 4910425*x^13 + 73936*x^12 - 31103793*x^11 + 29606989*x^10 - 37188866*x^9 - 1032078*x^8 + 18427375*x^7 + 9826086*x^6 + 38717700*x^5 - 4091466*x^4 + 4426189*x^3 + 7865200*x^2 + 5508449*x + 7890481);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_4^2$ (as 32T36):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_4^2$
Character table for $C_2\times C_4^2$

Intermediate fields

\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{65}) \), \(\Q(\sqrt{-91}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-455}) \), \(\Q(\sqrt{-35}, \sqrt{65})\), 4.0.13456625.1, 4.4.274625.1, \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{13}, \sqrt{-35})\), \(\Q(\sqrt{5}, \sqrt{13})\), \(\Q(\sqrt{-7}, \sqrt{65})\), 4.0.13456625.2, 4.4.274625.2, \(\Q(\sqrt{5}, \sqrt{-91})\), \(\Q(\sqrt{-7}, \sqrt{13})\), 4.4.1035125.1, 4.0.21125.1, 4.4.6125.1, \(\Q(\zeta_{5})\), 4.0.2197.1, 4.4.2691325.1, 4.0.54925.1, 4.4.107653.1, 8.0.181080756390625.11, 8.0.42859350625.1, 8.0.181080756390625.8, 8.0.181080756390625.7, 8.0.181080756390625.2, 8.8.75418890625.1, 8.0.181080756390625.3, 8.0.1071483765625.1, 8.0.37515625.1, 8.0.7243230255625.2, 8.0.7243230255625.3, 8.8.1071483765625.1, 8.0.446265625.1, 8.0.3016755625.1, 8.8.7243230255625.1, 8.0.1071483765625.3, 8.0.1071483765625.2, 8.0.11589168409.1, 8.0.7243230255625.1, 16.0.32790240335000876777587890625.2, 16.0.1148077459997929931640625.1, 16.0.52464384536001402844140625.1, 16.0.32790240335000876777587890625.1, 16.0.32790240335000876777587890625.3, 16.16.32790240335000876777587890625.1, 16.0.5688009063105712890625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{8}$ ${\href{/padicField/3.4.0.1}{4} }^{8}$ R R ${\href{/padicField/11.4.0.1}{4} }^{8}$ R ${\href{/padicField/17.4.0.1}{4} }^{8}$ ${\href{/padicField/19.4.0.1}{4} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{8}$ ${\href{/padicField/29.2.0.1}{2} }^{16}$ ${\href{/padicField/31.4.0.1}{4} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{8}$ ${\href{/padicField/41.4.0.1}{4} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
\(7\) Copy content Toggle raw display 7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(13\) Copy content Toggle raw display 13.16.12.1$x^{16} + 12 x^{14} + 48 x^{13} + 114 x^{12} + 432 x^{11} + 888 x^{10} - 5280 x^{9} + 4933 x^{8} + 13680 x^{7} + 64788 x^{6} - 10416 x^{5} + 182568 x^{4} + 90432 x^{3} + 720840 x^{2} + 400992 x + 573316$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
13.16.12.1$x^{16} + 12 x^{14} + 48 x^{13} + 114 x^{12} + 432 x^{11} + 888 x^{10} - 5280 x^{9} + 4933 x^{8} + 13680 x^{7} + 64788 x^{6} - 10416 x^{5} + 182568 x^{4} + 90432 x^{3} + 720840 x^{2} + 400992 x + 573316$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$