Normalized defining polynomial
\( x^{28} + 18 x^{26} + 225 x^{24} - 288 x^{23} + 1152 x^{22} - 5760 x^{21} + 18108 x^{20} - 89952 x^{19} + \cdots + 57600 \)
Invariants
| Degree: | $28$ |
| |
| Signature: | $[4, 12]$ |
| |
| Discriminant: |
\(4717667136961114442493020206737586382842235909528214306816\)
\(\medspace = 2^{106}\cdot 3^{54}\)
|
| |
| Root discriminant: | \(114.76\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{18}a^{10}+\frac{1}{3}a^{9}-\frac{1}{6}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{9}a$, $\frac{1}{18}a^{11}-\frac{1}{6}a^{9}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{9}a^{2}-\frac{1}{3}a$, $\frac{1}{36}a^{12}-\frac{1}{36}a^{10}-\frac{1}{3}a^{9}+\frac{1}{6}a^{8}+\frac{1}{3}a^{5}-\frac{1}{6}a^{4}-\frac{2}{9}a^{3}+\frac{1}{6}a^{2}-\frac{1}{9}a$, $\frac{1}{36}a^{13}-\frac{1}{36}a^{11}+\frac{1}{6}a^{9}+\frac{1}{3}a^{6}-\frac{1}{6}a^{5}-\frac{2}{9}a^{4}+\frac{1}{6}a^{3}-\frac{1}{9}a^{2}+\frac{1}{3}a$, $\frac{1}{72}a^{14}-\frac{1}{72}a^{13}-\frac{1}{72}a^{12}-\frac{1}{72}a^{11}-\frac{1}{36}a^{10}+\frac{1}{3}a^{9}+\frac{1}{12}a^{6}-\frac{7}{36}a^{5}-\frac{11}{36}a^{4}+\frac{1}{36}a^{3}-\frac{7}{18}a^{2}+\frac{2}{9}a$, $\frac{1}{72}a^{15}-\frac{1}{72}a^{11}+\frac{1}{3}a^{9}-\frac{1}{3}a^{8}+\frac{5}{12}a^{7}-\frac{4}{9}a^{6}+\frac{1}{3}a^{4}+\frac{1}{4}a^{3}+\frac{1}{9}a^{2}-\frac{1}{3}a$, $\frac{1}{144}a^{16}-\frac{1}{72}a^{13}-\frac{1}{144}a^{12}-\frac{1}{72}a^{11}+\frac{1}{3}a^{9}+\frac{3}{8}a^{8}+\frac{4}{9}a^{7}-\frac{1}{2}a^{6}-\frac{1}{12}a^{5}-\frac{31}{72}a^{4}-\frac{7}{36}a^{3}+\frac{4}{9}a^{2}+\frac{1}{3}a$, $\frac{1}{144}a^{17}+\frac{1}{144}a^{13}+\frac{1}{72}a^{11}-\frac{7}{24}a^{9}+\frac{1}{9}a^{8}-\frac{1}{6}a^{7}-\frac{1}{3}a^{6}-\frac{1}{8}a^{5}+\frac{1}{9}a^{4}+\frac{1}{12}a^{3}+\frac{2}{9}a^{2}-\frac{1}{3}a$, $\frac{1}{288}a^{18}+\frac{1}{288}a^{14}-\frac{1}{72}a^{13}+\frac{1}{144}a^{12}-\frac{1}{72}a^{11}+\frac{1}{48}a^{10}-\frac{4}{9}a^{9}+\frac{1}{12}a^{8}+\frac{7}{16}a^{6}-\frac{7}{36}a^{5}-\frac{1}{72}a^{4}+\frac{13}{36}a^{3}-\frac{1}{18}a^{2}-\frac{1}{3}a$, $\frac{1}{2592}a^{19}+\frac{1}{864}a^{18}-\frac{1}{432}a^{17}+\frac{1}{432}a^{16}-\frac{1}{864}a^{15}+\frac{5}{864}a^{14}-\frac{1}{216}a^{13}+\frac{1}{216}a^{12}-\frac{7}{432}a^{11}+\frac{25}{1296}a^{10}-\frac{65}{216}a^{9}-\frac{71}{216}a^{8}-\frac{167}{432}a^{7}-\frac{125}{432}a^{6}-\frac{35}{108}a^{5}-\frac{41}{108}a^{4}-\frac{23}{54}a^{3}-\frac{23}{54}a^{2}+\frac{35}{81}a-\frac{1}{9}$, $\frac{1}{2592}a^{20}+\frac{1}{864}a^{18}+\frac{1}{432}a^{17}-\frac{1}{864}a^{16}-\frac{1}{216}a^{15}-\frac{1}{864}a^{14}+\frac{5}{432}a^{13}-\frac{1}{108}a^{12}+\frac{1}{81}a^{11}+\frac{7}{432}a^{10}+\frac{103}{216}a^{9}+\frac{13}{432}a^{8}+\frac{43}{108}a^{7}-\frac{95}{432}a^{6}+\frac{83}{216}a^{5}-\frac{23}{216}a^{4}-\frac{4}{27}a^{3}+\frac{79}{162}a^{2}-\frac{11}{27}a+\frac{1}{3}$, $\frac{1}{2592}a^{21}-\frac{1}{864}a^{18}-\frac{1}{864}a^{17}+\frac{1}{432}a^{16}+\frac{1}{432}a^{15}-\frac{5}{864}a^{14}-\frac{1}{432}a^{13}+\frac{1}{81}a^{12}-\frac{1}{216}a^{11}+\frac{1}{432}a^{10}+\frac{169}{432}a^{9}+\frac{77}{216}a^{8}+\frac{71}{216}a^{7}+\frac{109}{432}a^{6}+\frac{35}{108}a^{5}-\frac{1}{27}a^{4}-\frac{31}{324}a^{3}+\frac{7}{27}a^{2}+\frac{1}{27}a+\frac{1}{3}$, $\frac{1}{2592}a^{22}-\frac{1}{864}a^{18}+\frac{1}{432}a^{17}+\frac{1}{432}a^{16}+\frac{1}{216}a^{15}-\frac{1}{432}a^{14}-\frac{11}{1296}a^{13}-\frac{1}{216}a^{12}-\frac{1}{216}a^{11}-\frac{7}{432}a^{10}+\frac{95}{216}a^{9}+\frac{71}{216}a^{8}+\frac{25}{108}a^{7}+\frac{35}{108}a^{6}-\frac{71}{216}a^{5}+\frac{77}{324}a^{4}-\frac{35}{108}a^{3}+\frac{7}{27}a^{2}-\frac{13}{27}a-\frac{1}{3}$, $\frac{1}{2592}a^{23}-\frac{1}{864}a^{18}+\frac{1}{432}a^{17}-\frac{1}{432}a^{16}-\frac{5}{864}a^{15}+\frac{5}{2592}a^{14}-\frac{5}{432}a^{13}+\frac{1}{108}a^{12}+\frac{1}{216}a^{11}+\frac{5}{432}a^{10}-\frac{103}{216}a^{9}+\frac{23}{216}a^{8}+\frac{47}{432}a^{7}-\frac{31}{432}a^{6}+\frac{19}{648}a^{5}+\frac{17}{54}a^{4}+\frac{43}{108}a^{3}+\frac{19}{54}a^{2}+\frac{5}{27}a-\frac{1}{3}$, $\frac{1}{20736}a^{24}+\frac{1}{10368}a^{22}+\frac{1}{20736}a^{20}-\frac{1}{864}a^{18}+\frac{1}{432}a^{17}+\frac{1}{1728}a^{16}-\frac{1}{324}a^{15}-\frac{1}{144}a^{14}-\frac{5}{1296}a^{13}+\frac{1}{192}a^{12}+\frac{1}{162}a^{11}+\frac{1}{216}a^{10}-\frac{19}{216}a^{9}+\frac{103}{1728}a^{8}-\frac{8}{27}a^{7}+\frac{371}{2592}a^{6}+\frac{5}{72}a^{5}+\frac{1865}{5184}a^{4}-\frac{1}{9}a^{3}-\frac{7}{648}a^{2}-\frac{17}{54}a-\frac{5}{24}$, $\frac{1}{20736}a^{25}+\frac{1}{10368}a^{23}+\frac{1}{20736}a^{21}-\frac{1}{864}a^{18}+\frac{1}{1728}a^{17}-\frac{1}{324}a^{16}+\frac{1}{288}a^{15}+\frac{17}{2592}a^{14}+\frac{7}{576}a^{13}+\frac{17}{1296}a^{12}+\frac{11}{432}a^{11}-\frac{7}{432}a^{10}-\frac{137}{1728}a^{9}-\frac{23}{108}a^{8}+\frac{1181}{2592}a^{7}+\frac{55}{144}a^{6}-\frac{2239}{5184}a^{5}-\frac{11}{24}a^{4}-\frac{205}{648}a^{3}-\frac{4}{27}a^{2}+\frac{67}{216}a-\frac{1}{3}$, $\frac{1}{41472}a^{26}+\frac{5}{41472}a^{22}-\frac{1}{20736}a^{20}+\frac{1}{1152}a^{18}+\frac{1}{1296}a^{17}-\frac{1}{864}a^{16}-\frac{1}{144}a^{15}+\frac{17}{3456}a^{14}-\frac{1}{1296}a^{13}+\frac{1}{576}a^{12}-\frac{13}{648}a^{11}+\frac{25}{1152}a^{10}+\frac{1}{72}a^{9}-\frac{97}{324}a^{8}-\frac{1}{216}a^{7}+\frac{205}{1152}a^{6}-\frac{61}{216}a^{5}+\frac{271}{5184}a^{4}+\frac{1}{36}a^{3}-\frac{121}{1296}a^{2}+\frac{5}{18}a+\frac{3}{8}$, $\frac{1}{22\cdots 16}a^{27}-\frac{14\cdots 35}{18\cdots 68}a^{26}-\frac{15\cdots 71}{11\cdots 08}a^{25}-\frac{10\cdots 11}{55\cdots 04}a^{24}-\frac{20\cdots 51}{24\cdots 24}a^{23}-\frac{32\cdots 41}{20\cdots 52}a^{22}+\frac{50\cdots 79}{27\cdots 52}a^{21}+\frac{11\cdots 85}{18\cdots 68}a^{20}-\frac{99\cdots 09}{18\cdots 68}a^{19}-\frac{22\cdots 71}{13\cdots 76}a^{18}+\frac{29\cdots 63}{91\cdots 84}a^{17}-\frac{45\cdots 09}{13\cdots 76}a^{16}-\frac{17\cdots 21}{55\cdots 04}a^{15}+\frac{27\cdots 29}{45\cdots 92}a^{14}-\frac{55\cdots 03}{10\cdots 56}a^{13}-\frac{99\cdots 55}{13\cdots 76}a^{12}+\frac{21\cdots 91}{18\cdots 68}a^{11}-\frac{18\cdots 97}{17\cdots 96}a^{10}-\frac{91\cdots 83}{27\cdots 52}a^{9}+\frac{88\cdots 29}{15\cdots 64}a^{8}+\frac{21\cdots 85}{55\cdots 04}a^{7}+\frac{14\cdots 05}{13\cdots 76}a^{6}+\frac{44\cdots 87}{22\cdots 96}a^{5}+\frac{16\cdots 55}{15\cdots 64}a^{4}+\frac{10\cdots 85}{68\cdots 88}a^{3}+\frac{19\cdots 95}{95\cdots 04}a^{2}-\frac{56\cdots 93}{14\cdots 06}a+\frac{23\cdots 13}{63\cdots 36}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $15$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{24\cdots 93}{11\cdots 08}a^{27}+\frac{43\cdots 15}{11\cdots 08}a^{26}-\frac{60\cdots 43}{13\cdots 76}a^{25}+\frac{41\cdots 35}{55\cdots 04}a^{24}-\frac{63\cdots 09}{11\cdots 08}a^{23}+\frac{17\cdots 47}{11\cdots 08}a^{22}-\frac{84\cdots 73}{18\cdots 68}a^{21}+\frac{66\cdots 07}{34\cdots 44}a^{20}-\frac{19\cdots 45}{27\cdots 52}a^{19}+\frac{82\cdots 43}{27\cdots 52}a^{18}-\frac{64\cdots 83}{68\cdots 88}a^{17}+\frac{32\cdots 61}{13\cdots 76}a^{16}-\frac{22\cdots 39}{27\cdots 52}a^{15}+\frac{37\cdots 65}{27\cdots 52}a^{14}-\frac{62\cdots 13}{13\cdots 76}a^{13}+\frac{46\cdots 03}{11\cdots 48}a^{12}-\frac{33\cdots 65}{27\cdots 52}a^{11}+\frac{11\cdots 35}{27\cdots 52}a^{10}-\frac{17\cdots 83}{34\cdots 44}a^{9}-\frac{31\cdots 85}{13\cdots 76}a^{8}+\frac{47\cdots 67}{27\cdots 52}a^{7}+\frac{14\cdots 71}{27\cdots 52}a^{6}+\frac{70\cdots 57}{13\cdots 76}a^{5}-\frac{35\cdots 55}{17\cdots 72}a^{4}-\frac{59\cdots 37}{11\cdots 48}a^{3}-\frac{47\cdots 85}{34\cdots 44}a^{2}+\frac{23\cdots 45}{17\cdots 72}a+\frac{38\cdots 01}{47\cdots 02}$, $\frac{16\cdots 13}{13\cdots 76}a^{27}-\frac{12\cdots 81}{18\cdots 68}a^{26}+\frac{59\cdots 47}{27\cdots 52}a^{25}-\frac{26\cdots 76}{21\cdots 09}a^{24}+\frac{18\cdots 87}{68\cdots 88}a^{23}-\frac{27\cdots 99}{55\cdots 04}a^{22}+\frac{45\cdots 23}{27\cdots 52}a^{21}-\frac{71\cdots 11}{91\cdots 84}a^{20}+\frac{44\cdots 39}{17\cdots 72}a^{19}-\frac{16\cdots 01}{13\cdots 76}a^{18}+\frac{74\cdots 33}{22\cdots 96}a^{17}-\frac{27\cdots 59}{34\cdots 44}a^{16}+\frac{21\cdots 07}{68\cdots 88}a^{15}-\frac{38\cdots 21}{13\cdots 76}a^{14}+\frac{12\cdots 15}{68\cdots 88}a^{13}+\frac{23\cdots 01}{68\cdots 88}a^{12}+\frac{65\cdots 09}{11\cdots 48}a^{11}+\frac{71\cdots 21}{13\cdots 76}a^{10}+\frac{39\cdots 19}{68\cdots 88}a^{9}+\frac{11\cdots 43}{14\cdots 06}a^{8}-\frac{83\cdots 41}{34\cdots 44}a^{7}-\frac{10\cdots 43}{13\cdots 76}a^{6}-\frac{49\cdots 53}{68\cdots 88}a^{5}-\frac{37\cdots 09}{68\cdots 88}a^{4}-\frac{73\cdots 23}{43\cdots 18}a^{3}+\frac{36\cdots 11}{19\cdots 08}a^{2}+\frac{34\cdots 27}{86\cdots 36}a+\frac{14\cdots 43}{95\cdots 04}$, $\frac{14\cdots 89}{22\cdots 16}a^{27}+\frac{35\cdots 41}{68\cdots 88}a^{26}-\frac{13\cdots 23}{11\cdots 08}a^{25}+\frac{43\cdots 43}{45\cdots 92}a^{24}-\frac{11\cdots 95}{73\cdots 72}a^{23}+\frac{10\cdots 93}{34\cdots 44}a^{22}-\frac{54\cdots 09}{55\cdots 04}a^{21}+\frac{62\cdots 65}{13\cdots 76}a^{20}-\frac{85\cdots 21}{55\cdots 04}a^{19}+\frac{12\cdots 67}{17\cdots 72}a^{18}-\frac{54\cdots 47}{27\cdots 52}a^{17}+\frac{33\cdots 75}{68\cdots 88}a^{16}-\frac{33\cdots 81}{18\cdots 68}a^{15}+\frac{56\cdots 41}{28\cdots 12}a^{14}-\frac{14\cdots 69}{13\cdots 76}a^{13}+\frac{77\cdots 59}{34\cdots 44}a^{12}-\frac{17\cdots 77}{55\cdots 04}a^{11}-\frac{38\cdots 79}{17\cdots 72}a^{10}-\frac{75\cdots 11}{27\cdots 52}a^{9}-\frac{80\cdots 46}{21\cdots 09}a^{8}+\frac{11\cdots 91}{55\cdots 04}a^{7}+\frac{36\cdots 31}{95\cdots 04}a^{6}+\frac{49\cdots 03}{15\cdots 64}a^{5}+\frac{80\cdots 41}{34\cdots 44}a^{4}+\frac{30\cdots 79}{68\cdots 88}a^{3}-\frac{53\cdots 63}{43\cdots 18}a^{2}+\frac{74\cdots 69}{17\cdots 72}a-\frac{23\cdots 07}{47\cdots 02}$, $\frac{65\cdots 39}{55\cdots 04}a^{27}-\frac{95\cdots 39}{34\cdots 44}a^{26}+\frac{39\cdots 05}{18\cdots 68}a^{25}-\frac{45\cdots 79}{91\cdots 84}a^{24}+\frac{14\cdots 61}{55\cdots 04}a^{23}-\frac{62\cdots 49}{15\cdots 64}a^{22}+\frac{79\cdots 25}{55\cdots 04}a^{21}-\frac{65\cdots 39}{91\cdots 84}a^{20}+\frac{10\cdots 35}{45\cdots 92}a^{19}-\frac{38\cdots 23}{34\cdots 44}a^{18}+\frac{39\cdots 47}{13\cdots 76}a^{17}-\frac{74\cdots 31}{11\cdots 48}a^{16}+\frac{12\cdots 47}{45\cdots 92}a^{15}-\frac{54\cdots 75}{34\cdots 44}a^{14}+\frac{25\cdots 43}{15\cdots 64}a^{13}+\frac{74\cdots 07}{68\cdots 88}a^{12}+\frac{82\cdots 67}{15\cdots 64}a^{11}+\frac{51\cdots 58}{71\cdots 03}a^{10}+\frac{86\cdots 23}{13\cdots 76}a^{9}+\frac{59\cdots 73}{68\cdots 88}a^{8}-\frac{16\cdots 57}{45\cdots 92}a^{7}-\frac{36\cdots 13}{38\cdots 16}a^{6}-\frac{12\cdots 91}{13\cdots 76}a^{5}-\frac{50\cdots 61}{76\cdots 32}a^{4}-\frac{54\cdots 10}{21\cdots 09}a^{3}+\frac{76\cdots 89}{28\cdots 12}a^{2}+\frac{15\cdots 67}{57\cdots 24}a-\frac{41\cdots 19}{31\cdots 68}$, $\frac{15\cdots 99}{22\cdots 16}a^{27}-\frac{14\cdots 09}{11\cdots 08}a^{26}-\frac{13\cdots 13}{11\cdots 08}a^{25}-\frac{14\cdots 25}{61\cdots 56}a^{24}-\frac{34\cdots 35}{22\cdots 16}a^{23}+\frac{69\cdots 01}{40\cdots 04}a^{22}-\frac{42\cdots 33}{55\cdots 04}a^{21}+\frac{88\cdots 07}{22\cdots 96}a^{20}-\frac{65\cdots 87}{55\cdots 04}a^{19}+\frac{16\cdots 47}{27\cdots 52}a^{18}-\frac{38\cdots 25}{27\cdots 52}a^{17}+\frac{43\cdots 73}{13\cdots 76}a^{16}-\frac{27\cdots 51}{18\cdots 68}a^{15}+\frac{73\cdots 21}{27\cdots 52}a^{14}-\frac{44\cdots 15}{45\cdots 92}a^{13}-\frac{44\cdots 21}{43\cdots 18}a^{12}-\frac{64\cdots 77}{18\cdots 68}a^{11}-\frac{15\cdots 05}{27\cdots 52}a^{10}-\frac{15\cdots 01}{27\cdots 52}a^{9}-\frac{10\cdots 53}{13\cdots 76}a^{8}-\frac{11\cdots 83}{55\cdots 04}a^{7}+\frac{49\cdots 25}{91\cdots 84}a^{6}+\frac{10\cdots 87}{13\cdots 76}a^{5}+\frac{37\cdots 89}{57\cdots 24}a^{4}+\frac{25\cdots 37}{68\cdots 88}a^{3}+\frac{35\cdots 43}{38\cdots 16}a^{2}+\frac{17\cdots 37}{17\cdots 72}a+\frac{86\cdots 27}{47\cdots 02}$, $\frac{38\cdots 79}{27\cdots 52}a^{27}-\frac{19\cdots 67}{18\cdots 68}a^{26}+\frac{14\cdots 35}{55\cdots 04}a^{25}-\frac{18\cdots 81}{91\cdots 84}a^{24}+\frac{45\cdots 15}{13\cdots 76}a^{23}-\frac{36\cdots 01}{55\cdots 04}a^{22}+\frac{39\cdots 29}{18\cdots 68}a^{21}-\frac{14\cdots 53}{15\cdots 64}a^{20}+\frac{18\cdots 65}{57\cdots 24}a^{19}-\frac{20\cdots 69}{13\cdots 76}a^{18}+\frac{64\cdots 21}{15\cdots 64}a^{17}-\frac{70\cdots 59}{68\cdots 88}a^{16}+\frac{30\cdots 43}{76\cdots 32}a^{15}-\frac{57\cdots 75}{13\cdots 76}a^{14}+\frac{31\cdots 89}{13\cdots 76}a^{13}-\frac{11\cdots 59}{28\cdots 12}a^{12}+\frac{53\cdots 39}{76\cdots 32}a^{11}+\frac{75\cdots 51}{15\cdots 64}a^{10}+\frac{86\cdots 67}{13\cdots 76}a^{9}+\frac{19\cdots 43}{22\cdots 96}a^{8}-\frac{74\cdots 05}{17\cdots 72}a^{7}-\frac{35\cdots 07}{45\cdots 92}a^{6}-\frac{10\cdots 45}{13\cdots 76}a^{5}-\frac{20\cdots 87}{34\cdots 44}a^{4}-\frac{69\cdots 91}{63\cdots 36}a^{3}+\frac{63\cdots 31}{19\cdots 08}a^{2}-\frac{57\cdots 59}{57\cdots 24}a+\frac{20\cdots 87}{15\cdots 34}$, $\frac{12\cdots 27}{22\cdots 16}a^{27}-\frac{67\cdots 29}{18\cdots 68}a^{26}+\frac{38\cdots 47}{36\cdots 36}a^{25}-\frac{11\cdots 77}{17\cdots 72}a^{24}+\frac{32\cdots 31}{24\cdots 24}a^{23}-\frac{13\cdots 63}{55\cdots 04}a^{22}+\frac{44\cdots 23}{55\cdots 04}a^{21}-\frac{11\cdots 81}{30\cdots 28}a^{20}+\frac{23\cdots 21}{18\cdots 68}a^{19}-\frac{82\cdots 19}{13\cdots 76}a^{18}+\frac{14\cdots 23}{91\cdots 84}a^{17}-\frac{89\cdots 19}{22\cdots 96}a^{16}+\frac{83\cdots 57}{55\cdots 04}a^{15}-\frac{65\cdots 31}{45\cdots 92}a^{14}+\frac{12\cdots 71}{13\cdots 76}a^{13}+\frac{10\cdots 89}{68\cdots 88}a^{12}+\frac{48\cdots 37}{18\cdots 68}a^{11}+\frac{11\cdots 67}{45\cdots 92}a^{10}+\frac{62\cdots 21}{27\cdots 52}a^{9}+\frac{45\cdots 25}{12\cdots 72}a^{8}-\frac{35\cdots 43}{20\cdots 52}a^{7}-\frac{52\cdots 75}{13\cdots 76}a^{6}-\frac{13\cdots 07}{45\cdots 92}a^{5}-\frac{15\cdots 09}{68\cdots 88}a^{4}-\frac{29\cdots 69}{68\cdots 88}a^{3}+\frac{98\cdots 17}{57\cdots 24}a^{2}-\frac{29\cdots 45}{63\cdots 36}a+\frac{62\cdots 63}{10\cdots 56}$, $\frac{87\cdots 43}{25\cdots 44}a^{27}-\frac{17\cdots 91}{13\cdots 76}a^{26}-\frac{33\cdots 35}{55\cdots 04}a^{25}-\frac{21\cdots 29}{91\cdots 84}a^{24}-\frac{76\cdots 21}{10\cdots 76}a^{23}+\frac{29\cdots 11}{43\cdots 18}a^{22}-\frac{60\cdots 53}{18\cdots 68}a^{21}+\frac{16\cdots 07}{91\cdots 84}a^{20}-\frac{36\cdots 15}{68\cdots 88}a^{19}+\frac{21\cdots 39}{76\cdots 32}a^{18}-\frac{82\cdots 23}{13\cdots 76}a^{17}+\frac{44\cdots 67}{34\cdots 44}a^{16}-\frac{76\cdots 75}{11\cdots 48}a^{15}-\frac{10\cdots 15}{11\cdots 48}a^{14}-\frac{59\cdots 97}{13\cdots 76}a^{13}-\frac{14\cdots 39}{22\cdots 96}a^{12}-\frac{23\cdots 43}{14\cdots 06}a^{11}-\frac{52\cdots 47}{17\cdots 72}a^{10}-\frac{44\cdots 23}{17\cdots 96}a^{9}-\frac{23\cdots 09}{68\cdots 88}a^{8}-\frac{67\cdots 81}{68\cdots 88}a^{7}+\frac{19\cdots 27}{57\cdots 24}a^{6}+\frac{17\cdots 47}{45\cdots 92}a^{5}+\frac{20\cdots 01}{68\cdots 88}a^{4}+\frac{84\cdots 23}{57\cdots 24}a^{3}+\frac{23\cdots 57}{28\cdots 12}a^{2}-\frac{19\cdots 35}{17\cdots 72}a+\frac{16\cdots 53}{95\cdots 04}$, $\frac{89\cdots 87}{24\cdots 24}a^{27}+\frac{36\cdots 25}{11\cdots 08}a^{26}-\frac{24\cdots 93}{36\cdots 36}a^{25}+\frac{11\cdots 93}{18\cdots 68}a^{24}-\frac{62\cdots 57}{73\cdots 72}a^{23}+\frac{67\cdots 87}{36\cdots 36}a^{22}-\frac{15\cdots 25}{27\cdots 52}a^{21}+\frac{70\cdots 63}{27\cdots 52}a^{20}-\frac{53\cdots 03}{61\cdots 56}a^{19}+\frac{36\cdots 31}{91\cdots 84}a^{18}-\frac{31\cdots 63}{27\cdots 52}a^{17}+\frac{12\cdots 37}{45\cdots 92}a^{16}-\frac{18\cdots 31}{18\cdots 68}a^{15}+\frac{10\cdots 01}{91\cdots 84}a^{14}-\frac{66\cdots 25}{11\cdots 48}a^{13}+\frac{51\cdots 63}{68\cdots 88}a^{12}-\frac{88\cdots 23}{55\cdots 04}a^{11}-\frac{28\cdots 51}{30\cdots 28}a^{10}-\frac{75\cdots 25}{91\cdots 84}a^{9}-\frac{17\cdots 33}{13\cdots 76}a^{8}+\frac{37\cdots 43}{18\cdots 68}a^{7}+\frac{22\cdots 59}{91\cdots 84}a^{6}+\frac{33\cdots 67}{25\cdots 44}a^{5}-\frac{51\cdots 63}{22\cdots 96}a^{4}-\frac{66\cdots 67}{68\cdots 88}a^{3}-\frac{59\cdots 15}{34\cdots 44}a^{2}+\frac{24\cdots 70}{26\cdots 89}a-\frac{37\cdots 19}{10\cdots 56}$, $\frac{75\cdots 77}{73\cdots 72}a^{27}-\frac{30\cdots 11}{36\cdots 36}a^{26}+\frac{21\cdots 09}{11\cdots 08}a^{25}-\frac{85\cdots 13}{55\cdots 04}a^{24}+\frac{18\cdots 29}{73\cdots 72}a^{23}-\frac{18\cdots 71}{36\cdots 36}a^{22}+\frac{87\cdots 17}{55\cdots 04}a^{21}-\frac{49\cdots 91}{68\cdots 88}a^{20}+\frac{13\cdots 95}{55\cdots 04}a^{19}-\frac{10\cdots 67}{91\cdots 84}a^{18}+\frac{28\cdots 83}{91\cdots 84}a^{17}-\frac{10\cdots 39}{13\cdots 76}a^{16}+\frac{16\cdots 69}{55\cdots 04}a^{15}-\frac{29\cdots 49}{91\cdots 84}a^{14}+\frac{26\cdots 69}{15\cdots 64}a^{13}-\frac{35\cdots 05}{34\cdots 44}a^{12}+\frac{27\cdots 39}{55\cdots 04}a^{11}+\frac{91\cdots 31}{27\cdots 52}a^{10}+\frac{13\cdots 45}{30\cdots 28}a^{9}+\frac{86\cdots 11}{15\cdots 64}a^{8}-\frac{18\cdots 45}{55\cdots 04}a^{7}-\frac{16\cdots 97}{27\cdots 52}a^{6}-\frac{22\cdots 05}{45\cdots 92}a^{5}-\frac{25\cdots 48}{71\cdots 03}a^{4}-\frac{43\cdots 85}{68\cdots 88}a^{3}+\frac{69\cdots 87}{34\cdots 44}a^{2}-\frac{85\cdots 25}{17\cdots 72}a+\frac{37\cdots 13}{47\cdots 02}$, $\frac{10\cdots 99}{40\cdots 04}a^{27}+\frac{10\cdots 97}{55\cdots 04}a^{26}-\frac{25\cdots 71}{55\cdots 04}a^{25}+\frac{23\cdots 21}{68\cdots 88}a^{24}-\frac{64\cdots 85}{11\cdots 08}a^{23}+\frac{63\cdots 69}{55\cdots 04}a^{22}-\frac{34\cdots 07}{91\cdots 84}a^{21}+\frac{46\cdots 03}{27\cdots 52}a^{20}-\frac{15\cdots 49}{27\cdots 52}a^{19}+\frac{12\cdots 81}{45\cdots 92}a^{18}-\frac{10\cdots 27}{13\cdots 76}a^{17}+\frac{61\cdots 57}{34\cdots 44}a^{16}-\frac{18\cdots 79}{27\cdots 52}a^{15}+\frac{99\cdots 91}{13\cdots 76}a^{14}-\frac{27\cdots 89}{68\cdots 88}a^{13}+\frac{18\cdots 13}{22\cdots 96}a^{12}-\frac{32\cdots 25}{27\cdots 52}a^{11}-\frac{11\cdots 19}{13\cdots 76}a^{10}-\frac{46\cdots 45}{45\cdots 92}a^{9}-\frac{24\cdots 89}{17\cdots 72}a^{8}+\frac{21\cdots 59}{27\cdots 52}a^{7}+\frac{19\cdots 13}{13\cdots 76}a^{6}+\frac{83\cdots 23}{68\cdots 88}a^{5}+\frac{61\cdots 07}{68\cdots 88}a^{4}+\frac{66\cdots 23}{38\cdots 16}a^{3}-\frac{82\cdots 29}{17\cdots 72}a^{2}+\frac{14\cdots 93}{86\cdots 36}a-\frac{17\cdots 89}{95\cdots 04}$, $\frac{89\cdots 75}{13\cdots 76}a^{27}-\frac{15\cdots 45}{27\cdots 52}a^{26}+\frac{11\cdots 31}{91\cdots 84}a^{25}-\frac{32\cdots 51}{30\cdots 28}a^{24}+\frac{10\cdots 11}{68\cdots 88}a^{23}-\frac{88\cdots 75}{27\cdots 52}a^{22}+\frac{28\cdots 37}{27\cdots 52}a^{21}-\frac{42\cdots 47}{91\cdots 84}a^{20}+\frac{54\cdots 67}{34\cdots 44}a^{19}-\frac{12\cdots 23}{17\cdots 72}a^{18}+\frac{14\cdots 61}{68\cdots 88}a^{17}-\frac{57\cdots 11}{11\cdots 48}a^{16}+\frac{43\cdots 33}{22\cdots 96}a^{15}-\frac{14\cdots 01}{68\cdots 88}a^{14}+\frac{75\cdots 35}{68\cdots 88}a^{13}-\frac{95\cdots 41}{68\cdots 88}a^{12}+\frac{37\cdots 07}{11\cdots 48}a^{11}+\frac{13\cdots 01}{68\cdots 88}a^{10}+\frac{18\cdots 45}{68\cdots 88}a^{9}+\frac{23\cdots 99}{68\cdots 88}a^{8}-\frac{90\cdots 77}{38\cdots 16}a^{7}-\frac{79\cdots 69}{22\cdots 96}a^{6}-\frac{20\cdots 31}{68\cdots 88}a^{5}-\frac{14\cdots 21}{68\cdots 88}a^{4}-\frac{26\cdots 21}{86\cdots 36}a^{3}+\frac{13\cdots 47}{14\cdots 06}a^{2}-\frac{17\cdots 11}{86\cdots 36}a+\frac{37\cdots 11}{95\cdots 04}$, $\frac{10\cdots 73}{73\cdots 72}a^{27}+\frac{22\cdots 35}{68\cdots 88}a^{26}+\frac{27\cdots 39}{11\cdots 08}a^{25}+\frac{13\cdots 19}{22\cdots 96}a^{24}+\frac{23\cdots 33}{73\cdots 72}a^{23}-\frac{75\cdots 13}{22\cdots 96}a^{22}+\frac{42\cdots 95}{27\cdots 52}a^{21}-\frac{53\cdots 95}{68\cdots 88}a^{20}+\frac{43\cdots 01}{18\cdots 68}a^{19}-\frac{13\cdots 23}{11\cdots 48}a^{18}+\frac{76\cdots 79}{27\cdots 52}a^{17}-\frac{43\cdots 69}{68\cdots 88}a^{16}+\frac{54\cdots 51}{18\cdots 68}a^{15}-\frac{53\cdots 45}{11\cdots 48}a^{14}+\frac{22\cdots 37}{11\cdots 48}a^{13}+\frac{92\cdots 91}{43\cdots 18}a^{12}+\frac{39\cdots 23}{55\cdots 04}a^{11}+\frac{37\cdots 13}{31\cdots 68}a^{10}+\frac{11\cdots 81}{91\cdots 84}a^{9}+\frac{52\cdots 15}{34\cdots 44}a^{8}+\frac{27\cdots 99}{55\cdots 04}a^{7}-\frac{10\cdots 43}{95\cdots 04}a^{6}-\frac{11\cdots 83}{76\cdots 32}a^{5}-\frac{26\cdots 49}{19\cdots 08}a^{4}-\frac{54\cdots 69}{68\cdots 88}a^{3}-\frac{96\cdots 49}{43\cdots 18}a^{2}-\frac{33\cdots 93}{14\cdots 06}a-\frac{36\cdots 41}{79\cdots 67}$, $\frac{18\cdots 55}{11\cdots 08}a^{27}+\frac{31\cdots 93}{11\cdots 08}a^{26}-\frac{18\cdots 83}{55\cdots 04}a^{25}+\frac{29\cdots 17}{55\cdots 04}a^{24}-\frac{48\cdots 83}{11\cdots 08}a^{23}+\frac{12\cdots 81}{11\cdots 08}a^{22}-\frac{11\cdots 25}{34\cdots 44}a^{21}+\frac{61\cdots 27}{42\cdots 24}a^{20}-\frac{14\cdots 51}{27\cdots 52}a^{19}+\frac{61\cdots 93}{27\cdots 52}a^{18}-\frac{95\cdots 91}{13\cdots 76}a^{17}+\frac{24\cdots 45}{13\cdots 76}a^{16}-\frac{16\cdots 01}{27\cdots 52}a^{15}+\frac{27\cdots 87}{27\cdots 52}a^{14}-\frac{29\cdots 77}{86\cdots 36}a^{13}+\frac{48\cdots 99}{17\cdots 72}a^{12}-\frac{88\cdots 73}{91\cdots 84}a^{11}+\frac{53\cdots 05}{27\cdots 52}a^{10}-\frac{80\cdots 59}{13\cdots 76}a^{9}-\frac{69\cdots 79}{13\cdots 76}a^{8}+\frac{31\cdots 77}{27\cdots 52}a^{7}+\frac{29\cdots 21}{27\cdots 52}a^{6}+\frac{31\cdots 79}{86\cdots 36}a^{5}+\frac{94\cdots 35}{43\cdots 18}a^{4}-\frac{48\cdots 07}{34\cdots 44}a^{3}+\frac{45\cdots 55}{11\cdots 48}a^{2}+\frac{81\cdots 01}{43\cdots 18}a+\frac{53\cdots 09}{47\cdots 02}$, $\frac{42\cdots 63}{22\cdots 16}a^{27}-\frac{44\cdots 97}{30\cdots 28}a^{26}-\frac{12\cdots 73}{36\cdots 36}a^{25}-\frac{38\cdots 65}{13\cdots 76}a^{24}-\frac{89\cdots 75}{22\cdots 16}a^{23}+\frac{14\cdots 39}{27\cdots 52}a^{22}-\frac{32\cdots 37}{17\cdots 72}a^{21}+\frac{24\cdots 99}{22\cdots 96}a^{20}-\frac{59\cdots 57}{18\cdots 68}a^{19}+\frac{11\cdots 75}{68\cdots 88}a^{18}-\frac{34\cdots 33}{91\cdots 84}a^{17}+\frac{46\cdots 87}{57\cdots 24}a^{16}-\frac{21\cdots 77}{55\cdots 04}a^{15}+\frac{37\cdots 83}{68\cdots 88}a^{14}-\frac{16\cdots 45}{68\cdots 88}a^{13}-\frac{92\cdots 19}{34\cdots 44}a^{12}-\frac{13\cdots 57}{18\cdots 68}a^{11}-\frac{11\cdots 21}{85\cdots 48}a^{10}-\frac{23\cdots 83}{27\cdots 52}a^{9}-\frac{10\cdots 13}{11\cdots 48}a^{8}+\frac{38\cdots 99}{18\cdots 68}a^{7}+\frac{16\cdots 43}{68\cdots 88}a^{6}+\frac{58\cdots 85}{34\cdots 44}a^{5}+\frac{20\cdots 95}{86\cdots 36}a^{4}-\frac{16\cdots 95}{68\cdots 88}a^{3}-\frac{40\cdots 37}{28\cdots 12}a^{2}+\frac{32\cdots 07}{28\cdots 12}a-\frac{70\cdots 86}{79\cdots 67}$
|
| |
| Regulator: | \( 10821496099847764000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{12}\cdot 10821496099847764000 \cdot 1}{2\cdot\sqrt{4717667136961114442493020206737586382842235909528214306816}}\cr\approx \mathstrut & 4.77168830360644 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 12096 |
| The 16 conjugacy class representatives for $G(2,2)$ |
| Character table for $G(2,2)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 36 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{4}{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.12.0.1}{12} }^{2}{,}\,{\href{/padicField/7.3.0.1}{3} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.8.0.1}{8} }^{3}{,}\,{\href{/padicField/11.4.0.1}{4} }$ | ${\href{/padicField/13.7.0.1}{7} }^{4}$ | ${\href{/padicField/17.7.0.1}{7} }^{4}$ | ${\href{/padicField/19.12.0.1}{12} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.12.0.1}{12} }^{2}{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.7.0.1}{7} }^{4}$ | ${\href{/padicField/31.6.0.1}{6} }^{4}{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.7.0.1}{7} }^{4}$ | ${\href{/padicField/41.7.0.1}{7} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{3}{,}\,{\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.6.0.1}{6} }^{4}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.8.0.1}{8} }^{3}{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{12}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.9a1.1 | $x^{4} + 2 x^{2} + 2$ | $4$ | $1$ | $9$ | $D_{4}$ | $$[2, 3, \frac{7}{2}]$$ |
| 2.1.8.31a1.155 | $x^{8} + 4 x^{4} + 18$ | $8$ | $1$ | $31$ | $(C_8:C_2):C_2$ | $$[2, 3, \frac{7}{2}, 4, 5]$$ | |
| 2.1.16.66h1.325 | $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 18$ | $16$ | $1$ | $66$ | 16T41 | $$[2, 3, \frac{7}{2}, 4, 5]$$ | |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $27$ | $27$ | $1$ | $54$ |