Defining polynomial
\(x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 18\)
|
Invariants
Base field: | $\Q_{2}$ |
Degree $d$: | $16$ |
Ramification index $e$: | $16$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $66$ |
Discriminant root field: | $\Q_{2}$ |
Root number: | $-1$ |
$\Aut(K/\Q_{2})$: | $C_2^2$ |
This field is not Galois over $\Q_{2}.$ | |
Visible Artin slopes: | $[3, \frac{7}{2}, 4, 5]$ |
Visible Swan slopes: | $[2,\frac{5}{2},3,4]$ |
Means: | $\langle1, \frac{7}{4}, \frac{19}{8}, \frac{51}{16}\rangle$ |
Rams: | $(2, 3, 5, 13)$ |
Jump set: | $[1, 3, 7, 15, 31]$ |
Roots of unity: | $2$ |
Intermediate fields
$\Q_{2}(\sqrt{2})$, 2.1.4.10a1.1, 2.1.4.11a1.13, 2.1.4.11a1.12, 2.1.8.31a1.184 x2, 2.1.8.26c1.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Canonical tower
Unramified subfield: | $\Q_{2}$ |
Relative Eisenstein polynomial: |
\( x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 18 \)
|
Ramification polygon
Residual polynomials: | $z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$ |
Associated inertia: | $1$,$1$,$1$,$1$ |
Indices of inseparability: | $[51, 38, 28, 16, 0]$ |
Invariants of the Galois closure
Galois degree: | $32$ |
Galois group: | $\OD_{16}:C_2$ (as 16T41) |
Inertia group: | $\OD_{16}:C_2$ (as 16T41) |
Wild inertia group: | $\OD_{16}:C_2$ |
Galois unramified degree: | $1$ |
Galois tame degree: | $1$ |
Galois Artin slopes: | $[2, 3, \frac{7}{2}, 4, 5]$ |
Galois Swan slopes: | $[1,2,\frac{5}{2},3,4]$ |
Galois mean slope: | $4.1875$ |
Galois splitting model: | $x^{16} - 8 x^{14} + 44 x^{12} + 280 x^{10} + 994 x^{8} + 1016 x^{6} - 652 x^{4} - 1288 x^{2} + 961$ |