Properties

Label 2.1.16.66h
Base 2.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(66\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + 16 b_{63} x^{15} + 8 b_{46} x^{14} + 16 b_{61} x^{13} + 4 a_{28} x^{12} + 16 b_{59} x^{11} + 8 b_{42} x^{10} + 16 b_{57} x^{9} + \left(4 b_{24} + 8 c_{40}\right) x^{8} + 16 b_{55} x^{7} + 8 a_{38} x^{6} + 16 b_{53} x^{5} + 8 b_{36} x^{4} + 16 a_{51} x^{3} + 8 c_{32} + 16 c_{48} + 32 c_{64} + 2$

Invariants

Residue field characteristic: $2$
Degree: $16$
Base field: $\Q_{2}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $66$
Artin slopes: $[3,\frac{7}{2},4,5]$
Swan slopes: $[2,\frac{5}{2},3,4]$
Means: $\langle1,\frac{7}{4},\frac{19}{8},\frac{51}{16}\rangle$
Rams: $(2,3,5,13)$
Field count: $3072$ (complete)
Ambiguity: $16$
Mass: $1024$
Absolute Mass: $1024$

Diagrams

Varying

Indices of inseparability: $[51,38,28,16,0]$
Associated inertia: $[1,1,1,1]$
Jump Set: $[1,3,7,15,31]$

Galois groups and Hidden Artin slopes

Select desired size of Galois group.

Fields


Showing 1-50 of at least 1000

Next   To download results, determine the number of results.
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.66h1.1 $x^{16} + 4 x^{12} + 8 x^{6} + 16 x^{3} + 2$ $D_4^2:(C_2\times C_4)$ (as 16T882) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.2 $x^{16} + 16 x^{15} + 4 x^{12} + 8 x^{6} + 16 x^{3} + 2$ $D_4^2:(C_2\times C_4)$ (as 16T882) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.3 $x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{6} + 16 x^{3} + 2$ $D_4^2:(C_2\times C_4)$ (as 16T882) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.4 $x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 8 x^{6} + 16 x^{3} + 2$ $D_4^2:(C_2\times C_4)$ (as 16T882) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.5 $x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.6 $x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 34$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.7 $x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.8 $x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 34$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.9 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.10 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 34$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.11 $x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.12 $x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 34$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.13 $x^{16} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3.D_4$ (as 16T899) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.14 $x^{16} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 34$ $C_4^3.D_4$ (as 16T899) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.15 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3.D_4$ (as 16T899) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.16 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 34$ $C_4^3.D_4$ (as 16T899) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.17 $x^{16} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ $(C_4\times \OD_{16}).D_4$ (as 16T906) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.18 $x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ $(C_4\times \OD_{16}).D_4$ (as 16T906) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.19 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ $(C_4\times \OD_{16}).D_4$ (as 16T906) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.20 $x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ $(C_4\times \OD_{16}).D_4$ (as 16T906) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.21 $x^{16} + 4 x^{12} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T871) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.22 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T871) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.23 $x^{16} + 4 x^{12} + 16 x^{11} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $(C_4\times \OD_{16}).D_4$ (as 16T906) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.24 $x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $(C_4\times \OD_{16}).D_4$ (as 16T906) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.25 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $(C_4\times \OD_{16}).D_4$ (as 16T906) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.26 $x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $(C_4\times \OD_{16}).D_4$ (as 16T906) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.27 $x^{16} + 4 x^{12} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $Q_8^2:(C_2\times C_4)$ (as 16T851) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.28 $x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $Q_8^2:(C_2\times C_4)$ (as 16T851) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.29 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $Q_8^2:(C_2\times C_4)$ (as 16T851) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.30 $x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $Q_8^2:(C_2\times C_4)$ (as 16T851) $512$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.31 $x^{16} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3.D_4$ (as 16T873) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.32 $x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3.D_4$ (as 16T873) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.33 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3.D_4$ (as 16T873) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.34 $x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ $C_4^3.D_4$ (as 16T873) $512$ $4$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ $[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ $[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.35 $x^{16} + 4 x^{12} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T871) $512$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ $[2,2,\frac{17}{4}]^{4}$ $[1,1,\frac{13}{4}]^{4}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.36 $x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T871) $512$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ $[2,2,\frac{17}{4}]^{4}$ $[1,1,\frac{13}{4}]^{4}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.37 $x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $C_4^2.(C_2\times D_4)$ (as 16T662) $256$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ $[2,2,\frac{17}{4}]^{2}$ $[1,1,\frac{13}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.38 $x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $C_4^2.(C_2\times D_4)$ (as 16T662) $256$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ $[2,2,\frac{17}{4}]^{2}$ $[1,1,\frac{13}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.39 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $C_4^2.(C_2\times D_4)$ (as 16T662) $256$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ $[2,2,\frac{17}{4}]^{2}$ $[1,1,\frac{13}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.40 $x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $C_4^2.(C_2\times D_4)$ (as 16T662) $256$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ $[2,2,\frac{17}{4}]^{2}$ $[1,1,\frac{13}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.41 $x^{16} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $D_4^2:C_2^2$ (as 16T696) $256$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ $[2,2,\frac{17}{4}]^{2}$ $[1,1,\frac{13}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.42 $x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $D_4^2:C_2^2$ (as 16T696) $256$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ $[2,2,\frac{17}{4}]^{2}$ $[1,1,\frac{13}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.43 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $D_4^2:C_2^2$ (as 16T696) $256$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ $[2,2,\frac{17}{4}]^{2}$ $[1,1,\frac{13}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.44 $x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $D_4^2:C_2^2$ (as 16T696) $256$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ $[2,2,\frac{17}{4}]^{2}$ $[1,1,\frac{13}{4}]^{2}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.45 $x^{16} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ $[2,2,\frac{17}{4}]^{4}$ $[1,1,\frac{13}{4}]^{4}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.46 $x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ $[2,2,\frac{17}{4}]^{4}$ $[1,1,\frac{13}{4}]^{4}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.47 $x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ $[2,2,\frac{17}{4}]^{4}$ $[1,1,\frac{13}{4}]^{4}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.48 $x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $C_4^3:D_4$ (as 16T890) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ $[2,2,\frac{17}{4}]^{4}$ $[1,1,\frac{13}{4}]^{4}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.49 $x^{16} + 4 x^{12} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ $C_4^3.D_4$ (as 16T873) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ $[2,2,\frac{17}{4}]^{4}$ $[1,1,\frac{13}{4}]^{4}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66h1.50 $x^{16} + 4 x^{12} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 34$ $C_4^3.D_4$ (as 16T873) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ $[2,2,\frac{17}{4}]^{4}$ $[1,1,\frac{13}{4}]^{4}$ $[51, 38, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
Next   To download results, determine the number of results.