Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
2.1.16.66h1.1 |
32 |
$x^{16} + 4 x^{12} + 8 x^{6} + 16 x^{3} + 2$ |
$D_4^2:(C_2\times C_4)$ (as 16T882) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.2 |
32 |
$x^{16} + 16 x^{15} + 4 x^{12} + 8 x^{6} + 16 x^{3} + 2$ |
$D_4^2:(C_2\times C_4)$ (as 16T882) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.3 |
32 |
$x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{6} + 16 x^{3} + 2$ |
$D_4^2:(C_2\times C_4)$ (as 16T882) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.4 |
32 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 8 x^{6} + 16 x^{3} + 2$ |
$D_4^2:(C_2\times C_4)$ (as 16T882) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.5 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.6 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 34$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.7 |
64 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.8 |
64 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 34$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.9 |
64 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.10 |
64 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 34$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.11 |
64 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.12 |
64 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 34$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.13 |
32 |
$x^{16} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3.D_4$ (as 16T899) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.14 |
32 |
$x^{16} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 34$ |
$C_4^3.D_4$ (as 16T899) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.15 |
32 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3.D_4$ (as 16T899) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.16 |
32 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 34$ |
$C_4^3.D_4$ (as 16T899) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.17 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ |
$(C_4\times \OD_{16}).D_4$ (as 16T906) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.18 |
64 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ |
$(C_4\times \OD_{16}).D_4$ (as 16T906) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.19 |
64 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ |
$(C_4\times \OD_{16}).D_4$ (as 16T906) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.20 |
64 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{3} + 2$ |
$(C_4\times \OD_{16}).D_4$ (as 16T906) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.21 |
32 |
$x^{16} + 4 x^{12} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T871) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.22 |
32 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T871) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.23 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$(C_4\times \OD_{16}).D_4$ (as 16T906) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.24 |
64 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$(C_4\times \OD_{16}).D_4$ (as 16T906) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.25 |
64 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$(C_4\times \OD_{16}).D_4$ (as 16T906) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.26 |
64 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$(C_4\times \OD_{16}).D_4$ (as 16T906) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.27 |
32 |
$x^{16} + 4 x^{12} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$Q_8^2:(C_2\times C_4)$ (as 16T851) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.28 |
32 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$Q_8^2:(C_2\times C_4)$ (as 16T851) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.29 |
32 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$Q_8^2:(C_2\times C_4)$ (as 16T851) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.30 |
32 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$Q_8^2:(C_2\times C_4)$ (as 16T851) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.31 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3.D_4$ (as 16T873) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.32 |
64 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3.D_4$ (as 16T873) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.33 |
64 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3.D_4$ (as 16T873) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.34 |
64 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 16 x^{7} + 8 x^{6} + 16 x^{3} + 2$ |
$C_4^3.D_4$ (as 16T873) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]^{2}$ |
$[2,2,\frac{7}{2},\frac{15}{4}]^{2}$ |
$[1,1,\frac{5}{2},\frac{11}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.35 |
64 |
$x^{16} + 4 x^{12} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T871) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ |
$[2,2,\frac{17}{4}]^{4}$ |
$[1,1,\frac{13}{4}]^{4}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.36 |
64 |
$x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T871) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ |
$[2,2,\frac{17}{4}]^{4}$ |
$[1,1,\frac{13}{4}]^{4}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.37 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_4^2.(C_2\times D_4)$ (as 16T662) |
$256$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{17}{4}]^{2}$ |
$[1,1,\frac{13}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.38 |
64 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_4^2.(C_2\times D_4)$ (as 16T662) |
$256$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{17}{4}]^{2}$ |
$[1,1,\frac{13}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.39 |
64 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_4^2.(C_2\times D_4)$ (as 16T662) |
$256$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{17}{4}]^{2}$ |
$[1,1,\frac{13}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.40 |
64 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_4^2.(C_2\times D_4)$ (as 16T662) |
$256$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{17}{4}]^{2}$ |
$[1,1,\frac{13}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.41 |
32 |
$x^{16} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$D_4^2:C_2^2$ (as 16T696) |
$256$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{17}{4}]^{2}$ |
$[1,1,\frac{13}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.42 |
32 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$D_4^2:C_2^2$ (as 16T696) |
$256$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{17}{4}]^{2}$ |
$[1,1,\frac{13}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.43 |
32 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$D_4^2:C_2^2$ (as 16T696) |
$256$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{17}{4}]^{2}$ |
$[1,1,\frac{13}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.44 |
32 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$D_4^2:C_2^2$ (as 16T696) |
$256$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{2}$ |
$[2,2,\frac{17}{4}]^{2}$ |
$[1,1,\frac{13}{4}]^{2}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.45 |
128 |
$x^{16} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ |
$[2,2,\frac{17}{4}]^{4}$ |
$[1,1,\frac{13}{4}]^{4}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.46 |
128 |
$x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ |
$[2,2,\frac{17}{4}]^{4}$ |
$[1,1,\frac{13}{4}]^{4}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.47 |
128 |
$x^{16} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ |
$[2,2,\frac{17}{4}]^{4}$ |
$[1,1,\frac{13}{4}]^{4}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.48 |
128 |
$x^{16} + 16 x^{15} + 16 x^{13} + 4 x^{12} + 16 x^{11} + 16 x^{9} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_4^3:D_4$ (as 16T890) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ |
$[2,2,\frac{17}{4}]^{4}$ |
$[1,1,\frac{13}{4}]^{4}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.49 |
128 |
$x^{16} + 4 x^{12} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_4^3.D_4$ (as 16T873) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ |
$[2,2,\frac{17}{4}]^{4}$ |
$[1,1,\frac{13}{4}]^{4}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66h1.50 |
128 |
$x^{16} + 4 x^{12} + 16 x^{7} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 34$ |
$C_4^3.D_4$ (as 16T873) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, 5]^{4}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},4]^{4}$ |
$[2,2,\frac{17}{4}]^{4}$ |
$[1,1,\frac{13}{4}]^{4}$ |
$[51, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |