Properties

Label 2.1.16.66h1.8
Base \(\Q_{2}\)
Degree \(16\)
e \(16\)
f \(1\)
c \(66\)
Galois group $C_4^3:D_4$ (as 16T890)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 34\) Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $16$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $66$
Discriminant root field: $\Q_{2}$
Root number: $-1$
$\Aut(K/\Q_{2})$: $C_4$
This field is not Galois over $\Q_{2}.$
Visible Artin slopes:$[3, \frac{7}{2}, 4, 5]$
Visible Swan slopes:$[2,\frac{5}{2},3,4]$
Means:$\langle1, \frac{7}{4}, \frac{19}{8}, \frac{51}{16}\rangle$
Rams:$(2, 3, 5, 13)$
Jump set:$[1, 3, 7, 15, 31]$
Roots of unity:$2$

Intermediate fields

$\Q_{2}(\sqrt{2})$, 2.1.4.10a1.1, 2.1.8.26c1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{2}$
Relative Eisenstein polynomial: \( x^{16} + 16 x^{15} + 4 x^{12} + 16 x^{11} + 8 x^{6} + 16 x^{3} + 34 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^8 + 1$,$z^4 + 1$,$z^2 + 1$,$z + 1$
Associated inertia:$1$,$1$,$1$,$1$
Indices of inseparability:$[51, 38, 28, 16, 0]$

Invariants of the Galois closure

Galois degree: $512$
Galois group: $C_4^3:D_4$ (as 16T890)
Inertia group: $D_4^2:C_4$ (as 16T503)
Wild inertia group: $D_4^2:C_4$
Galois unramified degree: $2$
Galois tame degree: $1$
Galois Artin slopes: $[2, 2, 3, \frac{7}{2}, \frac{7}{2}, \frac{15}{4}, 4, 5]$
Galois Swan slopes: $[1,1,2,\frac{5}{2},\frac{5}{2},\frac{11}{4},3,4]$
Galois mean slope: $4.3671875$
Galois splitting model: $x^{16} - 24 x^{14} + 260 x^{12} - 1512 x^{10} + 4546 x^{8} - 6360 x^{6} + 4060 x^{4} - 1000 x^{2} + 25$ Copy content Toggle raw display