Properties

Label 26.2.167...625.1
Degree $26$
Signature $[2, 12]$
Discriminant $1.678\times 10^{53}$
Root discriminant \(111.46\)
Ramified primes $5,41$
Class number $6$ (GRH)
Class group [6] (GRH)
Galois group $\PSL(2,25)$ (as 26T42)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^26 - 11*x^25 + 45*x^24 - 240*x^23 + 1425*x^22 - 4005*x^21 + 12885*x^20 - 50435*x^19 + 53555*x^18 - 142870*x^17 + 503050*x^16 + 1144115*x^15 - 1778920*x^14 - 3596690*x^13 - 26810705*x^12 + 72895865*x^11 + 110135765*x^10 + 472613940*x^9 - 1155934625*x^8 - 4427715545*x^7 - 7223127110*x^6 - 17420055270*x^5 + 2907221810*x^4 - 16043305910*x^3 + 21674938395*x^2 + 14749741397*x - 14641021707)
 
Copy content gp:K = bnfinit(y^26 - 11*y^25 + 45*y^24 - 240*y^23 + 1425*y^22 - 4005*y^21 + 12885*y^20 - 50435*y^19 + 53555*y^18 - 142870*y^17 + 503050*y^16 + 1144115*y^15 - 1778920*y^14 - 3596690*y^13 - 26810705*y^12 + 72895865*y^11 + 110135765*y^10 + 472613940*y^9 - 1155934625*y^8 - 4427715545*y^7 - 7223127110*y^6 - 17420055270*y^5 + 2907221810*y^4 - 16043305910*y^3 + 21674938395*y^2 + 14749741397*y - 14641021707, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - 11*x^25 + 45*x^24 - 240*x^23 + 1425*x^22 - 4005*x^21 + 12885*x^20 - 50435*x^19 + 53555*x^18 - 142870*x^17 + 503050*x^16 + 1144115*x^15 - 1778920*x^14 - 3596690*x^13 - 26810705*x^12 + 72895865*x^11 + 110135765*x^10 + 472613940*x^9 - 1155934625*x^8 - 4427715545*x^7 - 7223127110*x^6 - 17420055270*x^5 + 2907221810*x^4 - 16043305910*x^3 + 21674938395*x^2 + 14749741397*x - 14641021707);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^26 - 11*x^25 + 45*x^24 - 240*x^23 + 1425*x^22 - 4005*x^21 + 12885*x^20 - 50435*x^19 + 53555*x^18 - 142870*x^17 + 503050*x^16 + 1144115*x^15 - 1778920*x^14 - 3596690*x^13 - 26810705*x^12 + 72895865*x^11 + 110135765*x^10 + 472613940*x^9 - 1155934625*x^8 - 4427715545*x^7 - 7223127110*x^6 - 17420055270*x^5 + 2907221810*x^4 - 16043305910*x^3 + 21674938395*x^2 + 14749741397*x - 14641021707)
 

\( x^{26} - 11 x^{25} + 45 x^{24} - 240 x^{23} + 1425 x^{22} - 4005 x^{21} + 12885 x^{20} + \cdots - 14641021707 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $26$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[2, 12]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(167794323485736669509699424789101816713809967041015625\) \(\medspace = 5^{30}\cdot 41^{20}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(111.46\)
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:(1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(5\), \(41\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{44\cdots 73}a^{25}-\frac{28\cdots 66}{44\cdots 73}a^{24}-\frac{16\cdots 25}{44\cdots 73}a^{23}-\frac{20\cdots 44}{44\cdots 73}a^{22}+\frac{94\cdots 22}{44\cdots 73}a^{21}-\frac{22\cdots 72}{44\cdots 73}a^{20}+\frac{89\cdots 61}{44\cdots 73}a^{19}+\frac{11\cdots 69}{44\cdots 73}a^{18}-\frac{11\cdots 93}{44\cdots 73}a^{17}+\frac{71\cdots 50}{44\cdots 73}a^{16}-\frac{17\cdots 84}{44\cdots 73}a^{15}+\frac{78\cdots 27}{44\cdots 73}a^{14}+\frac{21\cdots 35}{44\cdots 73}a^{13}-\frac{13\cdots 32}{44\cdots 73}a^{12}-\frac{13\cdots 80}{44\cdots 73}a^{11}+\frac{58\cdots 63}{44\cdots 73}a^{10}+\frac{85\cdots 75}{44\cdots 73}a^{9}-\frac{91\cdots 67}{44\cdots 73}a^{8}+\frac{17\cdots 50}{44\cdots 73}a^{7}-\frac{14\cdots 63}{44\cdots 73}a^{6}-\frac{63\cdots 33}{44\cdots 73}a^{5}+\frac{49\cdots 13}{44\cdots 73}a^{4}+\frac{14\cdots 39}{44\cdots 73}a^{3}-\frac{43\cdots 20}{44\cdots 73}a^{2}+\frac{19\cdots 25}{44\cdots 73}a+\frac{47\cdots 09}{44\cdots 73}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{6}$, which has order $6$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{6}$, which has order $6$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $13$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{87\cdots 97}{44\cdots 73}a^{25}+\frac{84\cdots 82}{44\cdots 73}a^{24}-\frac{25\cdots 40}{44\cdots 73}a^{23}+\frac{14\cdots 98}{44\cdots 73}a^{22}-\frac{91\cdots 75}{44\cdots 73}a^{21}+\frac{16\cdots 36}{44\cdots 73}a^{20}-\frac{55\cdots 51}{44\cdots 73}a^{19}+\frac{24\cdots 82}{44\cdots 73}a^{18}+\frac{23\cdots 84}{44\cdots 73}a^{17}+\frac{31\cdots 54}{44\cdots 73}a^{16}-\frac{21\cdots 80}{44\cdots 73}a^{15}-\frac{16\cdots 44}{44\cdots 73}a^{14}+\frac{24\cdots 97}{44\cdots 73}a^{13}+\frac{51\cdots 90}{44\cdots 73}a^{12}+\frac{26\cdots 86}{44\cdots 73}a^{11}-\frac{29\cdots 84}{44\cdots 73}a^{10}-\frac{18\cdots 72}{44\cdots 73}a^{9}-\frac{49\cdots 58}{44\cdots 73}a^{8}+\frac{36\cdots 91}{44\cdots 73}a^{7}+\frac{52\cdots 50}{44\cdots 73}a^{6}+\frac{11\cdots 56}{44\cdots 73}a^{5}+\frac{23\cdots 68}{44\cdots 73}a^{4}+\frac{19\cdots 73}{44\cdots 73}a^{3}+\frac{83\cdots 13}{44\cdots 73}a^{2}+\frac{41\cdots 12}{44\cdots 73}a-\frac{48\cdots 33}{44\cdots 73}$, $\frac{30\cdots 81}{44\cdots 73}a^{25}-\frac{37\cdots 91}{44\cdots 73}a^{24}+\frac{18\cdots 04}{44\cdots 73}a^{23}-\frac{94\cdots 31}{44\cdots 73}a^{22}+\frac{55\cdots 16}{44\cdots 73}a^{21}-\frac{18\cdots 13}{44\cdots 73}a^{20}+\frac{60\cdots 46}{44\cdots 73}a^{19}-\frac{22\cdots 39}{44\cdots 73}a^{18}+\frac{42\cdots 45}{44\cdots 73}a^{17}-\frac{90\cdots 06}{44\cdots 73}a^{16}+\frac{26\cdots 74}{44\cdots 73}a^{15}+\frac{16\cdots 68}{44\cdots 73}a^{14}-\frac{57\cdots 21}{44\cdots 73}a^{13}-\frac{91\cdots 19}{44\cdots 73}a^{12}-\frac{62\cdots 99}{44\cdots 73}a^{11}+\frac{29\cdots 83}{44\cdots 73}a^{10}+\frac{57\cdots 29}{44\cdots 73}a^{9}+\frac{12\cdots 88}{44\cdots 73}a^{8}-\frac{52\cdots 91}{44\cdots 73}a^{7}-\frac{82\cdots 36}{44\cdots 73}a^{6}-\frac{10\cdots 32}{44\cdots 73}a^{5}-\frac{30\cdots 21}{44\cdots 73}a^{4}+\frac{62\cdots 44}{44\cdots 73}a^{3}-\frac{75\cdots 31}{44\cdots 73}a^{2}+\frac{15\cdots 24}{44\cdots 73}a-\frac{80\cdots 29}{44\cdots 73}$, $\frac{57\cdots 26}{44\cdots 73}a^{25}+\frac{52\cdots 69}{44\cdots 73}a^{24}-\frac{13\cdots 69}{44\cdots 73}a^{23}+\frac{90\cdots 53}{44\cdots 73}a^{22}-\frac{56\cdots 54}{44\cdots 73}a^{21}+\frac{77\cdots 56}{44\cdots 73}a^{20}-\frac{32\cdots 04}{44\cdots 73}a^{19}+\frac{16\cdots 09}{44\cdots 73}a^{18}+\frac{22\cdots 18}{44\cdots 73}a^{17}+\frac{31\cdots 45}{44\cdots 73}a^{16}-\frac{17\cdots 66}{44\cdots 73}a^{15}-\frac{12\cdots 95}{44\cdots 73}a^{14}-\frac{40\cdots 70}{44\cdots 73}a^{13}+\frac{49\cdots 55}{44\cdots 73}a^{12}+\frac{19\cdots 79}{44\cdots 73}a^{11}-\frac{96\cdots 06}{44\cdots 73}a^{10}-\frac{16\cdots 53}{44\cdots 73}a^{9}-\frac{43\cdots 49}{44\cdots 73}a^{8}+\frac{26\cdots 94}{44\cdots 73}a^{7}+\frac{39\cdots 96}{44\cdots 73}a^{6}+\frac{10\cdots 95}{44\cdots 73}a^{5}+\frac{15\cdots 97}{44\cdots 73}a^{4}+\frac{94\cdots 19}{44\cdots 73}a^{3}-\frac{14\cdots 13}{44\cdots 73}a^{2}-\frac{63\cdots 27}{44\cdots 73}a-\frac{29\cdots 36}{44\cdots 73}$, $\frac{16\cdots 02}{44\cdots 73}a^{25}+\frac{15\cdots 56}{44\cdots 73}a^{24}-\frac{50\cdots 32}{44\cdots 73}a^{23}+\frac{30\cdots 75}{44\cdots 73}a^{22}-\frac{18\cdots 52}{44\cdots 73}a^{21}+\frac{37\cdots 61}{44\cdots 73}a^{20}-\frac{14\cdots 04}{44\cdots 73}a^{19}+\frac{58\cdots 93}{44\cdots 73}a^{18}+\frac{50\cdots 86}{44\cdots 73}a^{17}+\frac{20\cdots 80}{44\cdots 73}a^{16}-\frac{50\cdots 30}{44\cdots 73}a^{15}-\frac{27\cdots 20}{44\cdots 73}a^{14}-\frac{46\cdots 61}{44\cdots 73}a^{13}+\frac{56\cdots 07}{44\cdots 73}a^{12}+\frac{53\cdots 45}{44\cdots 73}a^{11}-\frac{54\cdots 93}{44\cdots 73}a^{10}-\frac{24\cdots 92}{44\cdots 73}a^{9}-\frac{11\cdots 39}{44\cdots 73}a^{8}+\frac{52\cdots 13}{44\cdots 73}a^{7}+\frac{78\cdots 80}{44\cdots 73}a^{6}+\frac{23\cdots 19}{44\cdots 73}a^{5}+\frac{54\cdots 80}{44\cdots 73}a^{4}+\frac{67\cdots 90}{44\cdots 73}a^{3}+\frac{80\cdots 43}{44\cdots 73}a^{2}+\frac{59\cdots 64}{44\cdots 73}a+\frac{35\cdots 95}{44\cdots 73}$, $\frac{36\cdots 50}{44\cdots 73}a^{25}+\frac{36\cdots 29}{44\cdots 73}a^{24}-\frac{12\cdots 43}{44\cdots 73}a^{23}+\frac{74\cdots 35}{44\cdots 73}a^{22}-\frac{44\cdots 55}{44\cdots 73}a^{21}+\frac{97\cdots 33}{44\cdots 73}a^{20}-\frac{37\cdots 25}{44\cdots 73}a^{19}+\frac{15\cdots 23}{44\cdots 73}a^{18}-\frac{34\cdots 70}{44\cdots 73}a^{17}+\frac{50\cdots 00}{44\cdots 73}a^{16}-\frac{14\cdots 52}{44\cdots 73}a^{15}-\frac{62\cdots 89}{44\cdots 73}a^{14}+\frac{51\cdots 35}{44\cdots 73}a^{13}+\frac{14\cdots 30}{44\cdots 73}a^{12}+\frac{13\cdots 03}{44\cdots 73}a^{11}-\frac{14\cdots 75}{44\cdots 73}a^{10}-\frac{63\cdots 40}{44\cdots 73}a^{9}-\frac{26\cdots 16}{44\cdots 73}a^{8}+\frac{19\cdots 20}{44\cdots 73}a^{7}+\frac{20\cdots 75}{44\cdots 73}a^{6}+\frac{51\cdots 72}{44\cdots 73}a^{5}+\frac{11\cdots 13}{44\cdots 73}a^{4}+\frac{75\cdots 98}{44\cdots 73}a^{3}+\frac{12\cdots 77}{44\cdots 73}a^{2}-\frac{10\cdots 12}{44\cdots 73}a-\frac{11\cdots 63}{44\cdots 73}$, $\frac{14\cdots 41}{44\cdots 73}a^{25}+\frac{15\cdots 68}{44\cdots 73}a^{24}-\frac{65\cdots 81}{44\cdots 73}a^{23}+\frac{36\cdots 86}{44\cdots 73}a^{22}-\frac{21\cdots 16}{44\cdots 73}a^{21}+\frac{58\cdots 05}{44\cdots 73}a^{20}-\frac{20\cdots 28}{44\cdots 73}a^{19}+\frac{74\cdots 23}{44\cdots 73}a^{18}-\frac{71\cdots 01}{44\cdots 73}a^{17}+\frac{23\cdots 98}{44\cdots 73}a^{16}-\frac{59\cdots 78}{44\cdots 73}a^{15}-\frac{20\cdots 39}{44\cdots 73}a^{14}+\frac{13\cdots 77}{44\cdots 73}a^{13}+\frac{37\cdots 43}{44\cdots 73}a^{12}+\frac{44\cdots 16}{44\cdots 73}a^{11}-\frac{79\cdots 55}{44\cdots 73}a^{10}-\frac{14\cdots 40}{44\cdots 73}a^{9}-\frac{89\cdots 07}{44\cdots 73}a^{8}+\frac{10\cdots 26}{44\cdots 73}a^{7}+\frac{68\cdots 36}{44\cdots 73}a^{6}+\frac{14\cdots 12}{44\cdots 73}a^{5}+\frac{37\cdots 89}{44\cdots 73}a^{4}+\frac{13\cdots 93}{44\cdots 73}a^{3}+\frac{36\cdots 29}{44\cdots 73}a^{2}-\frac{13\cdots 58}{44\cdots 73}a-\frac{42\cdots 69}{44\cdots 73}$, $\frac{21\cdots 21}{44\cdots 73}a^{25}-\frac{24\cdots 55}{44\cdots 73}a^{24}+\frac{99\cdots 74}{44\cdots 73}a^{23}-\frac{47\cdots 62}{44\cdots 73}a^{22}+\frac{28\cdots 91}{44\cdots 73}a^{21}-\frac{79\cdots 12}{44\cdots 73}a^{20}+\frac{20\cdots 66}{44\cdots 73}a^{19}-\frac{83\cdots 19}{44\cdots 73}a^{18}+\frac{55\cdots 30}{44\cdots 73}a^{17}-\frac{11\cdots 79}{44\cdots 73}a^{16}+\frac{64\cdots 15}{44\cdots 73}a^{15}+\frac{26\cdots 26}{44\cdots 73}a^{14}-\frac{68\cdots 68}{44\cdots 73}a^{13}-\frac{11\cdots 58}{44\cdots 73}a^{12}-\frac{28\cdots 45}{44\cdots 73}a^{11}+\frac{17\cdots 48}{44\cdots 73}a^{10}+\frac{24\cdots 36}{44\cdots 73}a^{9}+\frac{36\cdots 86}{44\cdots 73}a^{8}-\frac{26\cdots 08}{44\cdots 73}a^{7}-\frac{91\cdots 50}{44\cdots 73}a^{6}-\frac{34\cdots 30}{44\cdots 73}a^{5}-\frac{16\cdots 19}{44\cdots 73}a^{4}+\frac{86\cdots 19}{44\cdots 73}a^{3}+\frac{20\cdots 62}{44\cdots 73}a^{2}+\frac{52\cdots 97}{44\cdots 73}a-\frac{45\cdots 04}{44\cdots 73}$, $\frac{63\cdots 45}{44\cdots 73}a^{25}-\frac{75\cdots 86}{44\cdots 73}a^{24}+\frac{33\cdots 37}{44\cdots 73}a^{23}-\frac{15\cdots 57}{44\cdots 73}a^{22}+\frac{92\cdots 11}{44\cdots 73}a^{21}-\frac{27\cdots 20}{44\cdots 73}a^{20}+\frac{73\cdots 86}{44\cdots 73}a^{19}-\frac{28\cdots 69}{44\cdots 73}a^{18}+\frac{30\cdots 36}{44\cdots 73}a^{17}-\frac{13\cdots 88}{44\cdots 73}a^{16}+\frac{20\cdots 29}{44\cdots 73}a^{15}+\frac{63\cdots 66}{44\cdots 73}a^{14}-\frac{24\cdots 82}{44\cdots 73}a^{13}-\frac{22\cdots 41}{44\cdots 73}a^{12}-\frac{63\cdots 55}{44\cdots 73}a^{11}+\frac{57\cdots 33}{44\cdots 73}a^{10}+\frac{40\cdots 00}{44\cdots 73}a^{9}+\frac{62\cdots 84}{44\cdots 73}a^{8}-\frac{87\cdots 19}{44\cdots 73}a^{7}-\frac{22\cdots 69}{44\cdots 73}a^{6}+\frac{43\cdots 25}{44\cdots 73}a^{5}-\frac{46\cdots 18}{44\cdots 73}a^{4}+\frac{22\cdots 87}{44\cdots 73}a^{3}+\frac{43\cdots 81}{44\cdots 73}a^{2}-\frac{17\cdots 75}{44\cdots 73}a-\frac{70\cdots 29}{44\cdots 73}$, $\frac{19\cdots 15}{44\cdots 73}a^{25}-\frac{22\cdots 20}{44\cdots 73}a^{24}+\frac{10\cdots 42}{44\cdots 73}a^{23}-\frac{54\cdots 58}{44\cdots 73}a^{22}+\frac{31\cdots 43}{44\cdots 73}a^{21}-\frac{10\cdots 98}{44\cdots 73}a^{20}+\frac{32\cdots 25}{44\cdots 73}a^{19}-\frac{12\cdots 27}{44\cdots 73}a^{18}+\frac{19\cdots 18}{44\cdots 73}a^{17}-\frac{43\cdots 78}{44\cdots 73}a^{16}+\frac{13\cdots 49}{44\cdots 73}a^{15}+\frac{12\cdots 13}{44\cdots 73}a^{14}-\frac{44\cdots 67}{44\cdots 73}a^{13}-\frac{33\cdots 47}{44\cdots 73}a^{12}-\frac{49\cdots 58}{44\cdots 73}a^{11}+\frac{18\cdots 85}{44\cdots 73}a^{10}+\frac{69\cdots 13}{44\cdots 73}a^{9}+\frac{86\cdots 00}{44\cdots 73}a^{8}-\frac{29\cdots 58}{44\cdots 73}a^{7}-\frac{62\cdots 94}{44\cdots 73}a^{6}-\frac{91\cdots 77}{44\cdots 73}a^{5}-\frac{26\cdots 66}{44\cdots 73}a^{4}+\frac{26\cdots 21}{44\cdots 73}a^{3}-\frac{51\cdots 07}{44\cdots 73}a^{2}+\frac{82\cdots 66}{44\cdots 73}a-\frac{36\cdots 92}{44\cdots 73}$, $\frac{79\cdots 20}{44\cdots 73}a^{25}+\frac{84\cdots 43}{44\cdots 73}a^{24}-\frac{32\cdots 59}{44\cdots 73}a^{23}+\frac{17\cdots 97}{44\cdots 73}a^{22}-\frac{10\cdots 85}{44\cdots 73}a^{21}+\frac{27\cdots 57}{44\cdots 73}a^{20}-\frac{89\cdots 42}{44\cdots 73}a^{19}+\frac{36\cdots 43}{44\cdots 73}a^{18}-\frac{25\cdots 40}{44\cdots 73}a^{17}+\frac{98\cdots 92}{44\cdots 73}a^{16}-\frac{39\cdots 32}{44\cdots 73}a^{15}-\frac{11\cdots 72}{44\cdots 73}a^{14}+\frac{85\cdots 16}{44\cdots 73}a^{13}+\frac{33\cdots 18}{44\cdots 73}a^{12}+\frac{24\cdots 98}{44\cdots 73}a^{11}-\frac{48\cdots 19}{44\cdots 73}a^{10}-\frac{11\cdots 94}{44\cdots 73}a^{9}-\frac{40\cdots 93}{44\cdots 73}a^{8}+\frac{86\cdots 16}{44\cdots 73}a^{7}+\frac{47\cdots 78}{44\cdots 73}a^{6}+\frac{96\cdots 03}{44\cdots 73}a^{5}+\frac{21\cdots 07}{44\cdots 73}a^{4}+\frac{12\cdots 23}{44\cdots 73}a^{3}+\frac{21\cdots 10}{44\cdots 73}a^{2}-\frac{34\cdots 13}{44\cdots 73}a-\frac{16\cdots 94}{44\cdots 73}$, $\frac{39\cdots 44}{44\cdots 73}a^{25}-\frac{58\cdots 35}{44\cdots 73}a^{24}+\frac{31\cdots 72}{44\cdots 73}a^{23}-\frac{13\cdots 62}{44\cdots 73}a^{22}+\frac{80\cdots 61}{44\cdots 73}a^{21}-\frac{31\cdots 69}{44\cdots 73}a^{20}+\frac{79\cdots 03}{44\cdots 73}a^{19}-\frac{29\cdots 46}{44\cdots 73}a^{18}+\frac{68\cdots 64}{44\cdots 73}a^{17}-\frac{33\cdots 55}{44\cdots 73}a^{16}+\frac{24\cdots 79}{44\cdots 73}a^{15}-\frac{15\cdots 01}{44\cdots 73}a^{14}-\frac{32\cdots 88}{44\cdots 73}a^{13}-\frac{11\cdots 62}{44\cdots 73}a^{12}+\frac{35\cdots 49}{44\cdots 73}a^{11}+\frac{74\cdots 23}{44\cdots 73}a^{10}-\frac{41\cdots 14}{44\cdots 73}a^{9}-\frac{20\cdots 55}{44\cdots 73}a^{8}-\frac{12\cdots 99}{44\cdots 73}a^{7}-\frac{92\cdots 40}{44\cdots 73}a^{6}+\frac{74\cdots 33}{44\cdots 73}a^{5}+\frac{98\cdots 18}{44\cdots 73}a^{4}+\frac{18\cdots 25}{44\cdots 73}a^{3}-\frac{18\cdots 06}{44\cdots 73}a^{2}-\frac{17\cdots 34}{44\cdots 73}a+\frac{48\cdots 32}{44\cdots 73}$, $\frac{30\cdots 78}{44\cdots 73}a^{25}-\frac{34\cdots 45}{44\cdots 73}a^{24}+\frac{15\cdots 34}{44\cdots 73}a^{23}-\frac{80\cdots 87}{44\cdots 73}a^{22}+\frac{47\cdots 39}{44\cdots 73}a^{21}-\frac{14\cdots 05}{44\cdots 73}a^{20}+\frac{47\cdots 83}{44\cdots 73}a^{19}-\frac{17\cdots 15}{44\cdots 73}a^{18}+\frac{24\cdots 02}{44\cdots 73}a^{17}-\frac{62\cdots 15}{44\cdots 73}a^{16}+\frac{19\cdots 72}{44\cdots 73}a^{15}+\frac{28\cdots 33}{44\cdots 73}a^{14}-\frac{49\cdots 12}{44\cdots 73}a^{13}-\frac{84\cdots 94}{44\cdots 73}a^{12}-\frac{90\cdots 56}{44\cdots 73}a^{11}+\frac{23\cdots 93}{44\cdots 73}a^{10}+\frac{25\cdots 26}{44\cdots 73}a^{9}+\frac{16\cdots 87}{44\cdots 73}a^{8}-\frac{38\cdots 65}{44\cdots 73}a^{7}-\frac{12\cdots 69}{44\cdots 73}a^{6}-\frac{23\cdots 55}{44\cdots 73}a^{5}-\frac{54\cdots 64}{44\cdots 73}a^{4}+\frac{35\cdots 16}{44\cdots 73}a^{3}-\frac{45\cdots 15}{44\cdots 73}a^{2}+\frac{11\cdots 10}{44\cdots 73}a-\frac{58\cdots 29}{44\cdots 73}$, $\frac{43\cdots 39}{44\cdots 73}a^{25}+\frac{50\cdots 99}{44\cdots 73}a^{24}-\frac{23\cdots 77}{44\cdots 73}a^{23}+\frac{12\cdots 03}{44\cdots 73}a^{22}-\frac{73\cdots 02}{44\cdots 73}a^{21}+\frac{23\cdots 02}{44\cdots 73}a^{20}-\frac{83\cdots 88}{44\cdots 73}a^{19}+\frac{31\cdots 13}{44\cdots 73}a^{18}-\frac{55\cdots 08}{44\cdots 73}a^{17}+\frac{15\cdots 01}{44\cdots 73}a^{16}-\frac{40\cdots 88}{44\cdots 73}a^{15}-\frac{19\cdots 14}{44\cdots 73}a^{14}-\frac{59\cdots 30}{44\cdots 73}a^{13}+\frac{14\cdots 51}{44\cdots 73}a^{12}+\frac{12\cdots 33}{44\cdots 73}a^{11}-\frac{37\cdots 12}{44\cdots 73}a^{10}+\frac{43\cdots 01}{44\cdots 73}a^{9}-\frac{32\cdots 19}{44\cdots 73}a^{8}+\frac{72\cdots 20}{44\cdots 73}a^{7}+\frac{82\cdots 93}{44\cdots 73}a^{6}+\frac{48\cdots 05}{44\cdots 73}a^{5}+\frac{55\cdots 57}{44\cdots 73}a^{4}+\frac{57\cdots 14}{44\cdots 73}a^{3}+\frac{58\cdots 50}{44\cdots 73}a^{2}-\frac{43\cdots 83}{44\cdots 73}a-\frac{39\cdots 65}{44\cdots 73}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 9851869726433920.0 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{12}\cdot 9851869726433920.0 \cdot 6}{2\cdot\sqrt{167794323485736669509699424789101816713809967041015625}}\cr\approx \mathstrut & 1.09262138041333 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^26 - 11*x^25 + 45*x^24 - 240*x^23 + 1425*x^22 - 4005*x^21 + 12885*x^20 - 50435*x^19 + 53555*x^18 - 142870*x^17 + 503050*x^16 + 1144115*x^15 - 1778920*x^14 - 3596690*x^13 - 26810705*x^12 + 72895865*x^11 + 110135765*x^10 + 472613940*x^9 - 1155934625*x^8 - 4427715545*x^7 - 7223127110*x^6 - 17420055270*x^5 + 2907221810*x^4 - 16043305910*x^3 + 21674938395*x^2 + 14749741397*x - 14641021707) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^26 - 11*x^25 + 45*x^24 - 240*x^23 + 1425*x^22 - 4005*x^21 + 12885*x^20 - 50435*x^19 + 53555*x^18 - 142870*x^17 + 503050*x^16 + 1144115*x^15 - 1778920*x^14 - 3596690*x^13 - 26810705*x^12 + 72895865*x^11 + 110135765*x^10 + 472613940*x^9 - 1155934625*x^8 - 4427715545*x^7 - 7223127110*x^6 - 17420055270*x^5 + 2907221810*x^4 - 16043305910*x^3 + 21674938395*x^2 + 14749741397*x - 14641021707, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^26 - 11*x^25 + 45*x^24 - 240*x^23 + 1425*x^22 - 4005*x^21 + 12885*x^20 - 50435*x^19 + 53555*x^18 - 142870*x^17 + 503050*x^16 + 1144115*x^15 - 1778920*x^14 - 3596690*x^13 - 26810705*x^12 + 72895865*x^11 + 110135765*x^10 + 472613940*x^9 - 1155934625*x^8 - 4427715545*x^7 - 7223127110*x^6 - 17420055270*x^5 + 2907221810*x^4 - 16043305910*x^3 + 21674938395*x^2 + 14749741397*x - 14641021707); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^26 - 11*x^25 + 45*x^24 - 240*x^23 + 1425*x^22 - 4005*x^21 + 12885*x^20 - 50435*x^19 + 53555*x^18 - 142870*x^17 + 503050*x^16 + 1144115*x^15 - 1778920*x^14 - 3596690*x^13 - 26810705*x^12 + 72895865*x^11 + 110135765*x^10 + 472613940*x^9 - 1155934625*x^8 - 4427715545*x^7 - 7223127110*x^6 - 17420055270*x^5 + 2907221810*x^4 - 16043305910*x^3 + 21674938395*x^2 + 14749741397*x - 14641021707); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\PSL(2,25)$ (as 26T42):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 7800
The 15 conjugacy class representatives for $\PSL(2,25)$
Character table for $\PSL(2,25)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(b)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.13.0.1}{13} }^{2}$ ${\href{/padicField/3.12.0.1}{12} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ R ${\href{/padicField/7.13.0.1}{13} }^{2}$ ${\href{/padicField/11.2.0.1}{2} }^{12}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.12.0.1}{12} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ ${\href{/padicField/19.3.0.1}{3} }^{8}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.5.0.1}{5} }^{5}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.13.0.1}{13} }^{2}$ ${\href{/padicField/31.12.0.1}{12} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.13.0.1}{13} }^{2}$ R ${\href{/padicField/43.13.0.1}{13} }^{2}$ ${\href{/padicField/47.13.0.1}{13} }^{2}$ ${\href{/padicField/53.13.0.1}{13} }^{2}$ ${\href{/padicField/59.12.0.1}{12} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display $\Q_{5}$$x + 3$$1$$1$$0$Trivial$$[\ ]$$
Deg $25$$25$$1$$30$
\(41\) Copy content Toggle raw display $\Q_{41}$$x + 35$$1$$1$$0$Trivial$$[\ ]$$
Deg $25$$5$$5$$20$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)