Group action invariants
| Degree $n$ : | $26$ | |
| Transitive number $t$ : | $42$ | |
| Group : | $\PSL(2,25)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,19,26,4,17,2,6,22,18,5,21,12,16)(3,8,7,14,23,13,24,10,25,9,11,15,20), (1,21,5,9,4,2,10,16,12,18,14,25,3)(6,23,7,24,17,11,8,20,26,15,22,19,13) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 13: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 13, 13 $ | $600$ | $13$ | $( 1,10, 7,13,14,20,17,21,16, 8,26,19, 6)( 2,18, 4,11,23, 9,25, 5,15, 3,24,12, 22)$ |
| $ 13, 13 $ | $600$ | $13$ | $( 1,16,13,19,17,10, 8,14, 6,21, 7,26,20)( 2,15,11,12,25,18, 3,23,22, 5, 4,24, 9)$ |
| $ 13, 13 $ | $600$ | $13$ | $( 1, 8,20,10,26,17, 7,19,21,13, 6,16,14)( 2, 3, 9,18,24,25, 4,12, 5,11,22,15, 23)$ |
| $ 13, 13 $ | $600$ | $13$ | $( 1,21,10,16, 7, 8,13,26,14,19,20, 6,17)( 2, 5,18,15, 4, 3,11,24,23,12, 9,22, 25)$ |
| $ 13, 13 $ | $600$ | $13$ | $( 1,13,17, 8, 6, 7,20,16,19,10,14,21,26)( 2,11,25, 3,22, 4, 9,15,12,18,23, 5, 24)$ |
| $ 13, 13 $ | $600$ | $13$ | $( 1,19, 8,21,20,13,10, 6,26,16,17,14, 7)( 2,12, 3, 5, 9,11,18,22,24,15,25,23, 4)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $325$ | $2$ | $( 1, 4)( 2, 5)( 3,26)( 7,21)( 8,15)( 9,13)(10,24)(11,12)(14,17)(16,23)(18,22) (19,20)$ |
| $ 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ | $650$ | $3$ | $( 1, 5,26)( 2, 3, 4)( 7,14,10)( 8,20,13)( 9,15,19)(11,23,18)(12,16,22) (17,24,21)$ |
| $ 4, 4, 4, 4, 4, 4, 1, 1 $ | $650$ | $4$ | $( 1,10, 4,24)( 2,21, 5, 7)( 3,17,26,14)( 8,18,15,22)( 9,16,13,23)(11,19,12,20)$ |
| $ 6, 6, 6, 6, 1, 1 $ | $650$ | $6$ | $( 1, 3, 5, 4,26, 2)( 7,24,14,21,10,17)( 8, 9,20,15,13,19)(11,22,23,12,18,16)$ |
| $ 12, 12, 1, 1 $ | $650$ | $12$ | $( 1,21, 3,10, 5,17, 4, 7,26,24, 2,14)( 8,12, 9,18,20,16,15,11,13,22,19,23)$ |
| $ 12, 12, 1, 1 $ | $650$ | $12$ | $( 1, 7, 3,24, 5,14, 4,21,26,10, 2,17)( 8,11, 9,22,20,23,15,12,13,18,19,16)$ |
| $ 5, 5, 5, 5, 5, 1 $ | $312$ | $5$ | $( 1,26,18,10,14)( 2, 8, 4,23, 9)( 3,13,12,25, 5)( 6,16,19,24, 7) (11,17,15,21,20)$ |
| $ 5, 5, 5, 5, 5, 1 $ | $312$ | $5$ | $( 1,13,11, 9,24)( 2, 7,26,12,17)( 3,20,23,19,14)( 4,16,10, 5,21) ( 6,18,25,15, 8)$ |
Group invariants
| Order: | $7800=2^{3} \cdot 3 \cdot 5^{2} \cdot 13$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: |
2 3 . . . . . . 2 3 2 2 2 2 . .
3 1 . . . . . . 1 1 1 1 1 1 . .
5 2 . . . . . . . . . . . . 2 2
13 1 1 1 1 1 1 1 . . . . . . . .
1a 13a 13b 13c 13d 13e 13f 3a 2a 6a 4a 12a 12b 5a 5b
2P 1a 13f 13e 13b 13a 13d 13c 3a 1a 3a 2a 6a 6a 5a 5b
3P 1a 13e 13f 13a 13b 13c 13d 1a 2a 2a 4a 4a 4a 5a 5b
5P 1a 13b 13a 13d 13c 13f 13e 3a 2a 6a 4a 12b 12a 1a 1a
7P 1a 13d 13c 13f 13e 13b 13a 3a 2a 6a 4a 12b 12a 5a 5b
11P 1a 13f 13e 13b 13a 13d 13c 3a 2a 6a 4a 12a 12b 5a 5b
13P 1a 1a 1a 1a 1a 1a 1a 3a 2a 6a 4a 12a 12b 5a 5b
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 13 . . . . . . 1 1 1 -1 -1 -1 3 -2
X.3 13 . . . . . . 1 1 1 -1 -1 -1 -2 3
X.4 24 A F E B C D . . . . . . -1 -1
X.5 24 B E D C F A . . . . . . -1 -1
X.6 24 C D A F E B . . . . . . -1 -1
X.7 24 D C F A B E . . . . . . -1 -1
X.8 24 E B C D A F . . . . . . -1 -1
X.9 24 F A B E D C . . . . . . -1 -1
X.10 25 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 . .
X.11 26 . . . . . . -1 2 -1 -2 1 1 1 1
X.12 26 . . . . . . -1 2 -1 2 -1 -1 1 1
X.13 26 . . . . . . 2 -2 -2 . . . 1 1
X.14 26 . . . . . . -1 -2 1 . G -G 1 1
X.15 26 . . . . . . -1 -2 1 . -G G 1 1
A = -E(13)-E(13)^12
B = -E(13)^6-E(13)^7
C = -E(13)^3-E(13)^10
D = -E(13)^2-E(13)^11
E = -E(13)^4-E(13)^9
F = -E(13)^5-E(13)^8
G = -E(12)^7+E(12)^11
= Sqrt(3) = r3
|