Properties

Label 24.4.613...125.2
Degree $24$
Signature $[4, 10]$
Discriminant $6.134\times 10^{52}$
Root discriminant \(158.30\)
Ramified primes $5,197$
Class number $2$ (GRH)
Class group [2] (GRH)
Galois group $\GL(2,5)$ (as 24T1353)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^24 - 35*x^22 - 55*x^21 + 955*x^20 + 505*x^19 - 13360*x^18 - 20130*x^17 + 209535*x^16 + 359985*x^15 - 3499870*x^14 + 3872145*x^13 + 4149075*x^12 + 14576245*x^11 - 73943310*x^10 - 41050830*x^9 + 549395715*x^8 - 939702525*x^7 + 1082823105*x^6 - 269406495*x^5 - 9880462205*x^4 + 31459457800*x^3 - 44701823080*x^2 + 26766458640*x - 4828553680)
 
Copy content gp:K = bnfinit(y^24 - 35*y^22 - 55*y^21 + 955*y^20 + 505*y^19 - 13360*y^18 - 20130*y^17 + 209535*y^16 + 359985*y^15 - 3499870*y^14 + 3872145*y^13 + 4149075*y^12 + 14576245*y^11 - 73943310*y^10 - 41050830*y^9 + 549395715*y^8 - 939702525*y^7 + 1082823105*y^6 - 269406495*y^5 - 9880462205*y^4 + 31459457800*y^3 - 44701823080*y^2 + 26766458640*y - 4828553680, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 35*x^22 - 55*x^21 + 955*x^20 + 505*x^19 - 13360*x^18 - 20130*x^17 + 209535*x^16 + 359985*x^15 - 3499870*x^14 + 3872145*x^13 + 4149075*x^12 + 14576245*x^11 - 73943310*x^10 - 41050830*x^9 + 549395715*x^8 - 939702525*x^7 + 1082823105*x^6 - 269406495*x^5 - 9880462205*x^4 + 31459457800*x^3 - 44701823080*x^2 + 26766458640*x - 4828553680);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^24 - 35*x^22 - 55*x^21 + 955*x^20 + 505*x^19 - 13360*x^18 - 20130*x^17 + 209535*x^16 + 359985*x^15 - 3499870*x^14 + 3872145*x^13 + 4149075*x^12 + 14576245*x^11 - 73943310*x^10 - 41050830*x^9 + 549395715*x^8 - 939702525*x^7 + 1082823105*x^6 - 269406495*x^5 - 9880462205*x^4 + 31459457800*x^3 - 44701823080*x^2 + 26766458640*x - 4828553680)
 

\( x^{24} - 35 x^{22} - 55 x^{21} + 955 x^{20} + 505 x^{19} - 13360 x^{18} - 20130 x^{17} + \cdots - 4828553680 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $24$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[4, 10]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(61343664831565854732948944775316051495075225830078125\) \(\medspace = 5^{23}\cdot 197^{16}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(158.30\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $5^{23/24}197^{4/5}\approx 320.19845723009803$
Ramified primes:   \(5\), \(197\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\Aut(K/\Q)$:   $C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{6}-\frac{1}{2}a$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{7}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{8}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{16}-\frac{1}{2}a$, $\frac{1}{4}a^{17}-\frac{1}{4}a^{15}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{2}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{4}a^{18}-\frac{1}{4}a^{16}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}+\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{19}-\frac{1}{4}a^{15}-\frac{1}{4}a^{13}-\frac{1}{4}a^{7}+\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{788}a^{20}+\frac{15}{788}a^{19}-\frac{31}{788}a^{18}-\frac{63}{788}a^{17}-\frac{4}{197}a^{16}-\frac{29}{394}a^{15}-\frac{185}{788}a^{14}+\frac{157}{788}a^{13}+\frac{89}{788}a^{12}+\frac{103}{788}a^{11}-\frac{25}{788}a^{10}+\frac{173}{788}a^{9}-\frac{169}{394}a^{8}+\frac{155}{394}a^{7}-\frac{115}{788}a^{6}-\frac{261}{788}a^{5}+\frac{191}{788}a^{4}+\frac{323}{788}a^{3}+\frac{31}{394}a^{2}-\frac{69}{394}a+\frac{84}{197}$, $\frac{1}{788}a^{21}-\frac{59}{788}a^{19}+\frac{2}{197}a^{18}-\frac{14}{197}a^{17}+\frac{91}{394}a^{16}-\frac{103}{788}a^{15}+\frac{87}{394}a^{14}-\frac{99}{788}a^{13}-\frac{25}{394}a^{12}-\frac{191}{788}a^{11}+\frac{77}{394}a^{10}+\frac{11}{394}a^{9}-\frac{34}{197}a^{8}-\frac{37}{788}a^{7}-\frac{28}{197}a^{6}-\frac{31}{788}a^{5}-\frac{89}{394}a^{4}-\frac{63}{197}a^{3}+\frac{57}{394}a^{2}-\frac{88}{197}a-\frac{78}{197}$, $\frac{1}{371936}a^{22}-\frac{3}{11623}a^{21}+\frac{3}{6304}a^{20}-\frac{7927}{371936}a^{19}+\frac{26335}{371936}a^{18}-\frac{44179}{371936}a^{17}-\frac{7357}{92984}a^{16}-\frac{5359}{185968}a^{15}-\frac{68737}{371936}a^{14}+\frac{78617}{371936}a^{13}-\frac{20585}{185968}a^{12}+\frac{76485}{371936}a^{11}-\frac{43317}{371936}a^{10}+\frac{45081}{371936}a^{9}-\frac{19289}{185968}a^{8}-\frac{39909}{185968}a^{7}+\frac{25739}{371936}a^{6}+\frac{147067}{371936}a^{5}+\frac{178733}{371936}a^{4}-\frac{39139}{371936}a^{3}+\frac{98487}{371936}a^{2}-\frac{25185}{92984}a+\frac{29085}{92984}$, $\frac{1}{89\cdots 92}a^{23}+\frac{23\cdots 79}{44\cdots 96}a^{22}-\frac{45\cdots 43}{89\cdots 92}a^{21}+\frac{28\cdots 07}{89\cdots 92}a^{20}-\frac{60\cdots 27}{89\cdots 92}a^{19}-\frac{40\cdots 29}{89\cdots 92}a^{18}+\frac{46\cdots 97}{44\cdots 96}a^{17}-\frac{93\cdots 99}{44\cdots 96}a^{16}+\frac{17\cdots 95}{89\cdots 92}a^{15}+\frac{57\cdots 71}{89\cdots 92}a^{14}+\frac{12\cdots 03}{52\cdots 36}a^{13}+\frac{26\cdots 99}{15\cdots 88}a^{12}+\frac{68\cdots 01}{89\cdots 92}a^{11}+\frac{24\cdots 23}{89\cdots 92}a^{10}+\frac{38\cdots 71}{52\cdots 36}a^{9}+\frac{14\cdots 41}{44\cdots 96}a^{8}-\frac{78\cdots 13}{89\cdots 92}a^{7}+\frac{25\cdots 57}{89\cdots 92}a^{6}+\frac{18\cdots 23}{89\cdots 92}a^{5}-\frac{16\cdots 85}{89\cdots 92}a^{4}-\frac{39\cdots 11}{89\cdots 92}a^{3}+\frac{79\cdots 11}{44\cdots 96}a^{2}+\frac{14\cdots 11}{22\cdots 48}a+\frac{40\cdots 27}{11\cdots 24}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{4}$, which has order $4$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $13$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{67\cdots 99}{23\cdots 14}a^{23}-\frac{10\cdots 97}{47\cdots 28}a^{22}+\frac{48\cdots 31}{47\cdots 28}a^{21}+\frac{11\cdots 45}{47\cdots 28}a^{20}-\frac{31\cdots 93}{11\cdots 07}a^{19}-\frac{95\cdots 39}{23\cdots 14}a^{18}+\frac{18\cdots 71}{47\cdots 28}a^{17}+\frac{45\cdots 03}{47\cdots 28}a^{16}-\frac{26\cdots 19}{47\cdots 28}a^{15}-\frac{77\cdots 89}{47\cdots 28}a^{14}+\frac{21\cdots 25}{23\cdots 14}a^{13}-\frac{63\cdots 65}{47\cdots 28}a^{12}-\frac{25\cdots 85}{11\cdots 07}a^{11}-\frac{75\cdots 37}{11\cdots 07}a^{10}+\frac{82\cdots 75}{47\cdots 28}a^{9}+\frac{16\cdots 65}{47\cdots 28}a^{8}-\frac{68\cdots 25}{47\cdots 28}a^{7}+\frac{53\cdots 85}{47\cdots 28}a^{6}-\frac{13\cdots 55}{11\cdots 07}a^{5}-\frac{74\cdots 55}{23\cdots 14}a^{4}+\frac{14\cdots 25}{47\cdots 28}a^{3}-\frac{79\cdots 80}{11\cdots 07}a^{2}+\frac{53\cdots 15}{11\cdots 07}a-\frac{68\cdots 57}{11\cdots 07}$, $\frac{10\cdots 23}{11\cdots 07}a^{23}-\frac{46\cdots 57}{47\cdots 28}a^{22}+\frac{14\cdots 77}{47\cdots 28}a^{21}+\frac{20\cdots 29}{23\cdots 14}a^{20}-\frac{94\cdots 50}{11\cdots 07}a^{19}-\frac{69\cdots 89}{47\cdots 28}a^{18}+\frac{53\cdots 39}{47\cdots 28}a^{17}+\frac{15\cdots 45}{47\cdots 28}a^{16}-\frac{77\cdots 87}{47\cdots 28}a^{15}-\frac{13\cdots 39}{23\cdots 14}a^{14}+\frac{63\cdots 91}{23\cdots 14}a^{13}+\frac{58\cdots 35}{23\cdots 14}a^{12}-\frac{14\cdots 45}{23\cdots 14}a^{11}-\frac{10\cdots 99}{47\cdots 28}a^{10}+\frac{21\cdots 65}{47\cdots 28}a^{9}+\frac{56\cdots 47}{47\cdots 28}a^{8}-\frac{18\cdots 49}{47\cdots 28}a^{7}+\frac{31\cdots 94}{11\cdots 07}a^{6}-\frac{43\cdots 08}{11\cdots 07}a^{5}-\frac{13\cdots 87}{47\cdots 28}a^{4}+\frac{44\cdots 51}{47\cdots 28}a^{3}-\frac{21\cdots 94}{11\cdots 07}a^{2}+\frac{13\cdots 05}{11\cdots 07}a-\frac{11\cdots 77}{11\cdots 07}$, $\frac{23\cdots 89}{14\cdots 78}a^{23}-\frac{13\cdots 15}{14\cdots 78}a^{22}+\frac{42\cdots 94}{70\cdots 89}a^{21}+\frac{92\cdots 98}{70\cdots 89}a^{20}-\frac{44\cdots 67}{28\cdots 56}a^{19}-\frac{58\cdots 41}{28\cdots 56}a^{18}+\frac{64\cdots 17}{28\cdots 56}a^{17}+\frac{14\cdots 27}{28\cdots 56}a^{16}-\frac{48\cdots 25}{14\cdots 78}a^{15}-\frac{12\cdots 97}{14\cdots 78}a^{14}+\frac{36\cdots 99}{65\cdots 92}a^{13}-\frac{34\cdots 75}{28\cdots 56}a^{12}-\frac{37\cdots 73}{28\cdots 56}a^{11}-\frac{10\cdots 89}{28\cdots 56}a^{10}+\frac{71\cdots 43}{65\cdots 92}a^{9}+\frac{57\cdots 11}{28\cdots 56}a^{8}-\frac{59\cdots 79}{70\cdots 89}a^{7}+\frac{94\cdots 75}{14\cdots 78}a^{6}-\frac{20\cdots 49}{28\cdots 56}a^{5}+\frac{11\cdots 85}{28\cdots 56}a^{4}+\frac{49\cdots 65}{28\cdots 56}a^{3}-\frac{11\cdots 35}{28\cdots 56}a^{2}+\frac{18\cdots 25}{70\cdots 89}a-\frac{33\cdots 46}{70\cdots 89}$, $\frac{28\cdots 83}{56\cdots 12}a^{23}-\frac{10\cdots 97}{56\cdots 12}a^{22}-\frac{13\cdots 73}{56\cdots 12}a^{21}+\frac{43\cdots 55}{14\cdots 78}a^{20}+\frac{54\cdots 29}{70\cdots 89}a^{19}-\frac{28\cdots 21}{28\cdots 56}a^{18}-\frac{69\cdots 05}{56\cdots 12}a^{17}+\frac{15\cdots 03}{28\cdots 56}a^{16}+\frac{11\cdots 23}{56\cdots 12}a^{15}-\frac{17\cdots 87}{28\cdots 56}a^{14}-\frac{44\cdots 89}{13\cdots 84}a^{13}+\frac{29\cdots 55}{56\cdots 12}a^{12}+\frac{68\cdots 25}{70\cdots 89}a^{11}+\frac{10\cdots 07}{28\cdots 56}a^{10}-\frac{12\cdots 57}{13\cdots 84}a^{9}-\frac{22\cdots 37}{14\cdots 78}a^{8}+\frac{33\cdots 71}{56\cdots 12}a^{7}-\frac{56\cdots 17}{70\cdots 89}a^{6}+\frac{16\cdots 64}{70\cdots 89}a^{5}-\frac{13\cdots 71}{14\cdots 78}a^{4}-\frac{48\cdots 61}{70\cdots 89}a^{3}+\frac{18\cdots 29}{56\cdots 12}a^{2}-\frac{20\cdots 07}{70\cdots 89}a+\frac{86\cdots 37}{14\cdots 78}$, $\frac{59\cdots 75}{22\cdots 48}a^{23}-\frac{16\cdots 87}{11\cdots 24}a^{22}+\frac{20\cdots 13}{22\cdots 48}a^{21}+\frac{43\cdots 35}{22\cdots 48}a^{20}-\frac{54\cdots 79}{22\cdots 48}a^{19}-\frac{58\cdots 29}{22\cdots 48}a^{18}+\frac{38\cdots 95}{11\cdots 24}a^{17}+\frac{80\cdots 21}{11\cdots 24}a^{16}-\frac{11\cdots 77}{22\cdots 48}a^{15}-\frac{27\cdots 37}{22\cdots 48}a^{14}+\frac{56\cdots 75}{65\cdots 92}a^{13}-\frac{11\cdots 03}{22\cdots 48}a^{12}-\frac{35\cdots 47}{22\cdots 48}a^{11}-\frac{10\cdots 73}{22\cdots 48}a^{10}+\frac{11\cdots 11}{65\cdots 92}a^{9}+\frac{26\cdots 65}{11\cdots 24}a^{8}-\frac{30\cdots 13}{22\cdots 48}a^{7}+\frac{33\cdots 13}{22\cdots 48}a^{6}-\frac{44\cdots 73}{22\cdots 48}a^{5}+\frac{43\cdots 07}{22\cdots 48}a^{4}+\frac{60\cdots 17}{22\cdots 48}a^{3}-\frac{77\cdots 99}{11\cdots 24}a^{2}+\frac{42\cdots 83}{56\cdots 12}a-\frac{51\cdots 51}{28\cdots 56}$, $\frac{42\cdots 45}{22\cdots 48}a^{23}+\frac{63\cdots 11}{11\cdots 24}a^{22}-\frac{14\cdots 71}{22\cdots 48}a^{21}-\frac{27\cdots 53}{22\cdots 48}a^{20}+\frac{40\cdots 53}{22\cdots 48}a^{19}+\frac{34\cdots 87}{22\cdots 48}a^{18}-\frac{28\cdots 03}{11\cdots 24}a^{17}-\frac{51\cdots 27}{11\cdots 24}a^{16}+\frac{86\cdots 55}{22\cdots 48}a^{15}+\frac{30\cdots 17}{38\cdots 72}a^{14}-\frac{84\cdots 91}{13\cdots 84}a^{13}+\frac{11\cdots 61}{22\cdots 48}a^{12}+\frac{23\cdots 09}{22\cdots 48}a^{11}+\frac{66\cdots 39}{22\cdots 48}a^{10}-\frac{17\cdots 17}{13\cdots 84}a^{9}-\frac{12\cdots 83}{11\cdots 24}a^{8}+\frac{22\cdots 39}{22\cdots 48}a^{7}-\frac{33\cdots 23}{22\cdots 48}a^{6}+\frac{33\cdots 63}{22\cdots 48}a^{5}+\frac{83\cdots 11}{22\cdots 48}a^{4}-\frac{42\cdots 23}{22\cdots 48}a^{3}+\frac{58\cdots 87}{11\cdots 24}a^{2}-\frac{36\cdots 53}{56\cdots 12}a+\frac{77\cdots 79}{28\cdots 56}$, $\frac{16\cdots 09}{22\cdots 48}a^{23}-\frac{62\cdots 43}{11\cdots 24}a^{22}-\frac{68\cdots 91}{22\cdots 48}a^{21}-\frac{74\cdots 61}{22\cdots 48}a^{20}+\frac{20\cdots 85}{22\cdots 48}a^{19}+\frac{14\cdots 83}{22\cdots 48}a^{18}-\frac{15\cdots 45}{11\cdots 24}a^{17}-\frac{25\cdots 35}{11\cdots 24}a^{16}+\frac{47\cdots 07}{22\cdots 48}a^{15}+\frac{10\cdots 63}{22\cdots 48}a^{14}-\frac{21\cdots 07}{65\cdots 92}a^{13}-\frac{55\cdots 91}{22\cdots 48}a^{12}+\frac{24\cdots 09}{22\cdots 48}a^{11}+\frac{69\cdots 91}{22\cdots 48}a^{10}-\frac{40\cdots 17}{65\cdots 92}a^{9}-\frac{20\cdots 27}{11\cdots 24}a^{8}+\frac{72\cdots 07}{22\cdots 48}a^{7}-\frac{48\cdots 67}{22\cdots 48}a^{6}+\frac{19\cdots 15}{22\cdots 48}a^{5}+\frac{15\cdots 83}{22\cdots 48}a^{4}-\frac{20\cdots 51}{22\cdots 48}a^{3}+\frac{20\cdots 45}{11\cdots 24}a^{2}-\frac{65\cdots 21}{56\cdots 12}a+\frac{57\cdots 01}{28\cdots 56}$, $\frac{99\cdots 19}{22\cdots 48}a^{23}-\frac{96\cdots 91}{11\cdots 24}a^{22}-\frac{12\cdots 09}{22\cdots 48}a^{21}+\frac{95\cdots 57}{22\cdots 48}a^{20}+\frac{37\cdots 63}{22\cdots 48}a^{19}-\frac{52\cdots 63}{22\cdots 48}a^{18}+\frac{16\cdots 59}{11\cdots 24}a^{17}+\frac{44\cdots 87}{11\cdots 24}a^{16}+\frac{45\cdots 77}{22\cdots 48}a^{15}-\frac{15\cdots 35}{22\cdots 48}a^{14}-\frac{10\cdots 01}{13\cdots 84}a^{13}+\frac{34\cdots 59}{22\cdots 48}a^{12}-\frac{41\cdots 97}{22\cdots 48}a^{11}-\frac{17\cdots 75}{22\cdots 48}a^{10}+\frac{70\cdots 37}{13\cdots 84}a^{9}+\frac{58\cdots 83}{11\cdots 24}a^{8}-\frac{20\cdots 95}{22\cdots 48}a^{7}-\frac{81\cdots 45}{22\cdots 48}a^{6}+\frac{10\cdots 77}{22\cdots 48}a^{5}+\frac{17\cdots 49}{22\cdots 48}a^{4}-\frac{57\cdots 45}{22\cdots 48}a^{3}+\frac{29\cdots 17}{11\cdots 24}a^{2}-\frac{57\cdots 31}{56\cdots 12}a+\frac{25\cdots 89}{28\cdots 56}$, $\frac{11\cdots 03}{11\cdots 24}a^{23}+\frac{28\cdots 67}{28\cdots 56}a^{22}-\frac{44\cdots 69}{11\cdots 24}a^{21}-\frac{12\cdots 37}{11\cdots 24}a^{20}+\frac{10\cdots 61}{11\cdots 24}a^{19}+\frac{22\cdots 27}{11\cdots 24}a^{18}-\frac{17\cdots 09}{14\cdots 78}a^{17}-\frac{23\cdots 93}{56\cdots 12}a^{16}+\frac{20\cdots 17}{11\cdots 24}a^{15}+\frac{79\cdots 59}{11\cdots 24}a^{14}-\frac{38\cdots 37}{13\cdots 84}a^{13}-\frac{94\cdots 77}{11\cdots 24}a^{12}+\frac{45\cdots 01}{11\cdots 24}a^{11}+\frac{27\cdots 79}{11\cdots 24}a^{10}-\frac{56\cdots 99}{13\cdots 84}a^{9}-\frac{68\cdots 31}{56\cdots 12}a^{8}+\frac{49\cdots 77}{11\cdots 24}a^{7}-\frac{29\cdots 99}{11\cdots 24}a^{6}+\frac{96\cdots 23}{11\cdots 24}a^{5}+\frac{13\cdots 51}{11\cdots 24}a^{4}-\frac{17\cdots 21}{19\cdots 36}a^{3}+\frac{14\cdots 39}{70\cdots 89}a^{2}-\frac{21\cdots 33}{14\cdots 48}a+\frac{22\cdots 18}{70\cdots 89}$, $\frac{43\cdots 47}{14\cdots 78}a^{23}-\frac{35\cdots 37}{14\cdots 78}a^{22}+\frac{74\cdots 54}{70\cdots 89}a^{21}+\frac{72\cdots 73}{28\cdots 56}a^{20}-\frac{76\cdots 59}{28\cdots 56}a^{19}-\frac{10\cdots 55}{28\cdots 56}a^{18}+\frac{10\cdots 43}{28\cdots 56}a^{17}+\frac{65\cdots 00}{70\cdots 89}a^{16}-\frac{39\cdots 20}{70\cdots 89}a^{15}-\frac{44\cdots 99}{28\cdots 56}a^{14}+\frac{61\cdots 11}{65\cdots 92}a^{13}-\frac{11\cdots 29}{28\cdots 56}a^{12}-\frac{45\cdots 57}{28\cdots 56}a^{11}-\frac{16\cdots 19}{28\cdots 56}a^{10}+\frac{11\cdots 31}{65\cdots 92}a^{9}+\frac{38\cdots 25}{14\cdots 78}a^{8}-\frac{20\cdots 67}{14\cdots 78}a^{7}+\frac{47\cdots 67}{28\cdots 56}a^{6}-\frac{54\cdots 49}{28\cdots 56}a^{5}-\frac{21\cdots 75}{28\cdots 56}a^{4}+\frac{83\cdots 47}{28\cdots 56}a^{3}-\frac{50\cdots 80}{70\cdots 89}a^{2}+\frac{54\cdots 97}{70\cdots 89}a-\frac{12\cdots 49}{70\cdots 89}$, $\frac{85\cdots 87}{28\cdots 56}a^{23}+\frac{19\cdots 27}{14\cdots 78}a^{22}-\frac{14\cdots 49}{23\cdots 42}a^{21}-\frac{34\cdots 14}{70\cdots 89}a^{20}+\frac{14\cdots 57}{14\cdots 78}a^{19}+\frac{59\cdots 20}{70\cdots 89}a^{18}-\frac{14\cdots 49}{14\cdots 78}a^{17}-\frac{20\cdots 97}{14\cdots 78}a^{16}+\frac{57\cdots 72}{70\cdots 89}a^{15}+\frac{29\cdots 13}{14\cdots 78}a^{14}-\frac{14\cdots 55}{65\cdots 92}a^{13}-\frac{11\cdots 53}{14\cdots 78}a^{12}-\frac{19\cdots 69}{70\cdots 89}a^{11}+\frac{38\cdots 17}{70\cdots 89}a^{10}+\frac{18\cdots 22}{16\cdots 23}a^{9}-\frac{49\cdots 91}{14\cdots 78}a^{8}+\frac{21\cdots 37}{70\cdots 89}a^{7}+\frac{10\cdots 76}{70\cdots 89}a^{6}+\frac{11\cdots 03}{14\cdots 78}a^{5}+\frac{69\cdots 85}{14\cdots 78}a^{4}-\frac{39\cdots 61}{28\cdots 56}a^{3}+\frac{17\cdots 97}{14\cdots 78}a^{2}+\frac{92\cdots 21}{70\cdots 89}a-\frac{16\cdots 21}{11\cdots 71}$, $\frac{17\cdots 73}{22\cdots 48}a^{23}+\frac{57\cdots 71}{28\cdots 56}a^{22}+\frac{22\cdots 07}{22\cdots 48}a^{21}-\frac{11\cdots 21}{22\cdots 48}a^{20}-\frac{93\cdots 31}{22\cdots 48}a^{19}+\frac{21\cdots 91}{22\cdots 48}a^{18}+\frac{40\cdots 61}{56\cdots 12}a^{17}-\frac{10\cdots 69}{11\cdots 24}a^{16}-\frac{14\cdots 63}{11\cdots 84}a^{15}+\frac{18\cdots 71}{22\cdots 48}a^{14}+\frac{84\cdots 13}{44\cdots 52}a^{13}-\frac{53\cdots 33}{22\cdots 48}a^{12}-\frac{17\cdots 39}{22\cdots 48}a^{11}-\frac{11\cdots 77}{22\cdots 48}a^{10}+\frac{13\cdots 95}{26\cdots 68}a^{9}+\frac{23\cdots 01}{11\cdots 24}a^{8}-\frac{67\cdots 75}{22\cdots 48}a^{7}+\frac{65\cdots 97}{22\cdots 48}a^{6}+\frac{25\cdots 63}{22\cdots 48}a^{5}+\frac{31\cdots 39}{22\cdots 48}a^{4}+\frac{10\cdots 65}{22\cdots 48}a^{3}-\frac{80\cdots 25}{56\cdots 12}a^{2}+\frac{55\cdots 11}{56\cdots 12}a-\frac{12\cdots 01}{70\cdots 89}$, $\frac{13\cdots 95}{23\cdots 42}a^{23}+\frac{73\cdots 57}{28\cdots 56}a^{22}-\frac{60\cdots 51}{28\cdots 56}a^{21}-\frac{22\cdots 25}{47\cdots 84}a^{20}+\frac{81\cdots 07}{14\cdots 78}a^{19}+\frac{66\cdots 84}{70\cdots 89}a^{18}-\frac{23\cdots 71}{28\cdots 56}a^{17}-\frac{64\cdots 57}{28\cdots 56}a^{16}+\frac{34\cdots 73}{28\cdots 56}a^{15}+\frac{11\cdots 51}{28\cdots 56}a^{14}-\frac{62\cdots 15}{32\cdots 46}a^{13}-\frac{26\cdots 71}{28\cdots 56}a^{12}+\frac{34\cdots 97}{70\cdots 89}a^{11}+\frac{30\cdots 77}{14\cdots 78}a^{10}-\frac{15\cdots 17}{65\cdots 92}a^{9}-\frac{31\cdots 03}{28\cdots 56}a^{8}+\frac{44\cdots 61}{28\cdots 56}a^{7}-\frac{44\cdots 91}{28\cdots 56}a^{6}+\frac{69\cdots 91}{14\cdots 78}a^{5}+\frac{51\cdots 80}{70\cdots 89}a^{4}-\frac{15\cdots 15}{28\cdots 56}a^{3}+\frac{13\cdots 83}{14\cdots 78}a^{2}-\frac{44\cdots 67}{70\cdots 89}a+\frac{81\cdots 73}{70\cdots 89}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 591498666797754600 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{10}\cdot 591498666797754600 \cdot 2}{2\cdot\sqrt{61343664831565854732948944775316051495075225830078125}}\cr\approx \mathstrut & 3.66427092990403 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^24 - 35*x^22 - 55*x^21 + 955*x^20 + 505*x^19 - 13360*x^18 - 20130*x^17 + 209535*x^16 + 359985*x^15 - 3499870*x^14 + 3872145*x^13 + 4149075*x^12 + 14576245*x^11 - 73943310*x^10 - 41050830*x^9 + 549395715*x^8 - 939702525*x^7 + 1082823105*x^6 - 269406495*x^5 - 9880462205*x^4 + 31459457800*x^3 - 44701823080*x^2 + 26766458640*x - 4828553680) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^24 - 35*x^22 - 55*x^21 + 955*x^20 + 505*x^19 - 13360*x^18 - 20130*x^17 + 209535*x^16 + 359985*x^15 - 3499870*x^14 + 3872145*x^13 + 4149075*x^12 + 14576245*x^11 - 73943310*x^10 - 41050830*x^9 + 549395715*x^8 - 939702525*x^7 + 1082823105*x^6 - 269406495*x^5 - 9880462205*x^4 + 31459457800*x^3 - 44701823080*x^2 + 26766458640*x - 4828553680, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 35*x^22 - 55*x^21 + 955*x^20 + 505*x^19 - 13360*x^18 - 20130*x^17 + 209535*x^16 + 359985*x^15 - 3499870*x^14 + 3872145*x^13 + 4149075*x^12 + 14576245*x^11 - 73943310*x^10 - 41050830*x^9 + 549395715*x^8 - 939702525*x^7 + 1082823105*x^6 - 269406495*x^5 - 9880462205*x^4 + 31459457800*x^3 - 44701823080*x^2 + 26766458640*x - 4828553680); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^24 - 35*x^22 - 55*x^21 + 955*x^20 + 505*x^19 - 13360*x^18 - 20130*x^17 + 209535*x^16 + 359985*x^15 - 3499870*x^14 + 3872145*x^13 + 4149075*x^12 + 14576245*x^11 - 73943310*x^10 - 41050830*x^9 + 549395715*x^8 - 939702525*x^7 + 1082823105*x^6 - 269406495*x^5 - 9880462205*x^4 + 31459457800*x^3 - 44701823080*x^2 + 26766458640*x - 4828553680); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\GL(2,5)$ (as 24T1353):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A non-solvable group of order 480
The 24 conjugacy class representatives for $\GL(2,5)$
Character table for $\GL(2,5)$

Intermediate fields

6.2.4706682753125.1, 12.4.110764312692821648486328125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 24 siblings: 24.4.61343664831565854732948944775316051495075225830078125.1, 24.4.61343664831565854732948944775316051495075225830078125.3
Arithmetically equivalent sibling: 24.4.61343664831565854732948944775316051495075225830078125.4
Minimal sibling: 24.4.61343664831565854732948944775316051495075225830078125.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{5}{,}\,{\href{/padicField/2.1.0.1}{1} }^{4}$ ${\href{/padicField/3.8.0.1}{8} }^{3}$ R ${\href{/padicField/7.4.0.1}{4} }^{5}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.3.0.1}{3} }^{8}$ $24$ ${\href{/padicField/17.4.0.1}{4} }^{5}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ ${\href{/padicField/19.12.0.1}{12} }^{2}$ $24$ ${\href{/padicField/29.12.0.1}{12} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{6}$ ${\href{/padicField/37.4.0.1}{4} }^{5}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ ${\href{/padicField/41.3.0.1}{3} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{5}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ $24$ ${\href{/padicField/53.8.0.1}{8} }^{3}$ ${\href{/padicField/59.2.0.1}{2} }^{10}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $24$$24$$1$$23$
\(197\) Copy content Toggle raw display 197.4.1.0a1.1$x^{4} + 16 x^{2} + 124 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$
197.2.5.8a1.1$x^{10} + 960 x^{9} + 368650 x^{8} + 70786560 x^{7} + 6796984360 x^{6} + 261202401792 x^{5} + 13593968720 x^{4} + 283146240 x^{3} + 2949200 x^{2} + 15360 x + 229$$5$$2$$8$$F_5$$$[\ ]_{5}^{4}$$
197.2.5.8a1.1$x^{10} + 960 x^{9} + 368650 x^{8} + 70786560 x^{7} + 6796984360 x^{6} + 261202401792 x^{5} + 13593968720 x^{4} + 283146240 x^{3} + 2949200 x^{2} + 15360 x + 229$$5$$2$$8$$F_5$$$[\ ]_{5}^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)