# Oscar code for working with number field 24.4.61343664831565854732948944775316051495075225830078125.2. # If you have not already loaded the Oscar package, you should type "using Oscar;" before running the code below. # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: Qx, x = polynomial_ring(QQ); K, a = number_field(x^24 - 35*x^22 - 55*x^21 + 955*x^20 + 505*x^19 - 13360*x^18 - 20130*x^17 + 209535*x^16 + 359985*x^15 - 3499870*x^14 + 3872145*x^13 + 4149075*x^12 + 14576245*x^11 - 73943310*x^10 - 41050830*x^9 + 549395715*x^8 - 939702525*x^7 + 1082823105*x^6 - 269406495*x^5 - 9880462205*x^4 + 31459457800*x^3 - 44701823080*x^2 + 26766458640*x - 4828553680) # Defining polynomial: defining_polynomial(K) # Degree over Q: degree(K) # Signature: signature(K) # Discriminant: OK = ring_of_integers(K); discriminant(OK) # Ramified primes: prime_divisors(discriminant(OK)) # Autmorphisms: automorphisms(K) # Integral basis: basis(OK) # Class group: class_group(K) # Unit group: UK, fUK = unit_group(OK) # Unit rank: rank(UK) # Generator for roots of unity: torsion_units_generator(OK) # Fundamental units: [K(fUK(a)) for a in gens(UK)] # Regulator: regulator(K) # Analytic class number formula: # self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^24 - 35*x^22 - 55*x^21 + 955*x^20 + 505*x^19 - 13360*x^18 - 20130*x^17 + 209535*x^16 + 359985*x^15 - 3499870*x^14 + 3872145*x^13 + 4149075*x^12 + 14576245*x^11 - 73943310*x^10 - 41050830*x^9 + 549395715*x^8 - 939702525*x^7 + 1082823105*x^6 - 269406495*x^5 - 9880462205*x^4 + 31459457800*x^3 - 44701823080*x^2 + 26766458640*x - 4828553680); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK)))) # Intermediate fields: subfields(K)[2:end-1] # Galois group: G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing) # Frobenius cycle types: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]