// Magma code for working with number field 24.4.61343664831565854732948944775316051495075225830078125.2. // Some of these functions may take a long time to execute (this depends on the field). // Define the number field: R := PolynomialRing(Rationals()); K := NumberField(x^24 - 35*x^22 - 55*x^21 + 955*x^20 + 505*x^19 - 13360*x^18 - 20130*x^17 + 209535*x^16 + 359985*x^15 - 3499870*x^14 + 3872145*x^13 + 4149075*x^12 + 14576245*x^11 - 73943310*x^10 - 41050830*x^9 + 549395715*x^8 - 939702525*x^7 + 1082823105*x^6 - 269406495*x^5 - 9880462205*x^4 + 31459457800*x^3 - 44701823080*x^2 + 26766458640*x - 4828553680); // Defining polynomial: DefiningPolynomial(K); // Degree over Q: Degree(K); // Signature: Signature(K); // Discriminant: OK := Integers(K); Discriminant(OK); // Ramified primes: PrimeDivisors(Discriminant(OK)); // Autmorphisms: Automorphisms(K); // Integral basis: IntegralBasis(K); // Class group: ClassGroup(K); // Unit group: UK, fUK := UnitGroup(K); // Unit rank: UnitRank(K); // Generator for roots of unity: K!f(TU.1) where TU,f is TorsionUnitGroup(K); // Fundamental units: [K|fUK(g): g in Generators(UK)]; // Regulator: Regulator(K); // Analytic class number formula: /* self-contained Magma code snippet to compute the analytic class number formula */ Qx := PolynomialRing(Rationals()); K := NumberField(x^24 - 35*x^22 - 55*x^21 + 955*x^20 + 505*x^19 - 13360*x^18 - 20130*x^17 + 209535*x^16 + 359985*x^15 - 3499870*x^14 + 3872145*x^13 + 4149075*x^12 + 14576245*x^11 - 73943310*x^10 - 41050830*x^9 + 549395715*x^8 - 939702525*x^7 + 1082823105*x^6 - 269406495*x^5 - 9880462205*x^4 + 31459457800*x^3 - 44701823080*x^2 + 26766458640*x - 4828553680); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK))); // Intermediate fields: L := Subfields(K); L[2..#L]; // Galois group: G = GaloisGroup(K); // Frobenius cycle types: // to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [ : pr in Factorization(p*Integers(K))];