Normalized defining polynomial
\( x^{22} - 99 x^{20} + 3663 x^{18} - 62997 x^{16} + 515625 x^{14} - 1891296 x^{12} + 2785728 x^{10} + \cdots - 3 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[22, 0]$ |
| |
| Discriminant: |
\(90463257479444681369926681096111744478113640448\)
\(\medspace = 2^{12}\cdot 3^{21}\cdot 11^{32}\)
|
| |
| Root discriminant: | \(136.27\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{16}-\frac{1}{2}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{14\cdots 06}a^{20}-\frac{20\cdots 09}{14\cdots 06}a^{18}+\frac{14\cdots 79}{14\cdots 06}a^{16}-\frac{1}{2}a^{15}+\frac{24\cdots 41}{14\cdots 06}a^{14}-\frac{1}{2}a^{13}+\frac{10\cdots 41}{72\cdots 03}a^{12}-\frac{1}{2}a^{11}-\frac{41\cdots 91}{72\cdots 03}a^{10}-\frac{32\cdots 53}{72\cdots 03}a^{8}-\frac{21\cdots 31}{72\cdots 03}a^{6}-\frac{34\cdots 30}{72\cdots 03}a^{4}-\frac{1}{2}a^{3}+\frac{11\cdots 89}{14\cdots 06}a^{2}-\frac{56\cdots 29}{14\cdots 06}$, $\frac{1}{14\cdots 06}a^{21}-\frac{20\cdots 09}{14\cdots 06}a^{19}+\frac{14\cdots 79}{14\cdots 06}a^{17}-\frac{1}{2}a^{16}+\frac{24\cdots 41}{14\cdots 06}a^{15}-\frac{1}{2}a^{14}+\frac{10\cdots 41}{72\cdots 03}a^{13}-\frac{1}{2}a^{12}-\frac{41\cdots 91}{72\cdots 03}a^{11}-\frac{32\cdots 53}{72\cdots 03}a^{9}-\frac{21\cdots 31}{72\cdots 03}a^{7}-\frac{34\cdots 30}{72\cdots 03}a^{5}-\frac{1}{2}a^{4}+\frac{11\cdots 89}{14\cdots 06}a^{3}-\frac{56\cdots 29}{14\cdots 06}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH) |
|
Unit group
| Rank: | $21$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{30\cdots 71}{72\cdots 03}a^{20}-\frac{29\cdots 43}{72\cdots 03}a^{18}+\frac{11\cdots 00}{72\cdots 03}a^{16}-\frac{19\cdots 16}{72\cdots 03}a^{14}+\frac{15\cdots 58}{72\cdots 03}a^{12}-\frac{56\cdots 46}{72\cdots 03}a^{10}+\frac{83\cdots 40}{72\cdots 03}a^{8}-\frac{47\cdots 08}{72\cdots 03}a^{6}+\frac{81\cdots 16}{72\cdots 03}a^{4}-\frac{39\cdots 29}{72\cdots 03}a^{2}+\frac{52\cdots 74}{72\cdots 03}$, $\frac{33\cdots 05}{14\cdots 06}a^{21}-\frac{88\cdots 21}{14\cdots 06}a^{20}-\frac{16\cdots 63}{72\cdots 03}a^{19}+\frac{43\cdots 65}{72\cdots 03}a^{18}+\frac{62\cdots 71}{72\cdots 03}a^{17}-\frac{16\cdots 62}{72\cdots 03}a^{16}-\frac{10\cdots 66}{72\cdots 03}a^{15}+\frac{55\cdots 39}{14\cdots 06}a^{14}+\frac{17\cdots 81}{14\cdots 06}a^{13}-\frac{45\cdots 13}{14\cdots 06}a^{12}-\frac{63\cdots 85}{14\cdots 06}a^{11}+\frac{16\cdots 49}{14\cdots 06}a^{10}+\frac{90\cdots 27}{14\cdots 06}a^{9}-\frac{11\cdots 71}{72\cdots 03}a^{8}-\frac{50\cdots 07}{14\cdots 06}a^{7}+\frac{13\cdots 77}{14\cdots 06}a^{6}+\frac{35\cdots 56}{72\cdots 03}a^{5}-\frac{96\cdots 46}{72\cdots 03}a^{4}-\frac{14\cdots 77}{14\cdots 06}a^{3}+\frac{25\cdots 95}{72\cdots 03}a^{2}+\frac{29\cdots 90}{72\cdots 03}a-\frac{33\cdots 59}{14\cdots 06}$, $\frac{67\cdots 28}{72\cdots 03}a^{20}-\frac{66\cdots 83}{72\cdots 03}a^{18}+\frac{24\cdots 77}{72\cdots 03}a^{16}-\frac{42\cdots 17}{72\cdots 03}a^{14}+\frac{34\cdots 22}{72\cdots 03}a^{12}-\frac{12\cdots 08}{72\cdots 03}a^{10}+\frac{18\cdots 69}{72\cdots 03}a^{8}-\frac{10\cdots 46}{72\cdots 03}a^{6}+\frac{18\cdots 68}{72\cdots 03}a^{4}-\frac{84\cdots 61}{72\cdots 03}a^{2}+\frac{95\cdots 06}{72\cdots 03}$, $\frac{13\cdots 11}{72\cdots 03}a^{20}-\frac{13\cdots 68}{72\cdots 03}a^{18}+\frac{51\cdots 83}{72\cdots 03}a^{16}-\frac{87\cdots 89}{72\cdots 03}a^{14}+\frac{72\cdots 78}{72\cdots 03}a^{12}-\frac{26\cdots 52}{72\cdots 03}a^{10}+\frac{39\cdots 95}{72\cdots 03}a^{8}-\frac{23\cdots 65}{72\cdots 03}a^{6}+\frac{39\cdots 07}{72\cdots 03}a^{4}-\frac{17\cdots 27}{72\cdots 03}a^{2}+\frac{19\cdots 88}{72\cdots 03}$, $\frac{52\cdots 76}{72\cdots 03}a^{21}-\frac{53\cdots 47}{72\cdots 03}a^{20}-\frac{10\cdots 91}{14\cdots 06}a^{19}+\frac{52\cdots 33}{72\cdots 03}a^{18}+\frac{38\cdots 01}{14\cdots 06}a^{17}-\frac{39\cdots 85}{14\cdots 06}a^{16}-\frac{65\cdots 87}{14\cdots 06}a^{15}+\frac{33\cdots 98}{72\cdots 03}a^{14}+\frac{26\cdots 12}{72\cdots 03}a^{13}-\frac{27\cdots 30}{72\cdots 03}a^{12}-\frac{97\cdots 05}{72\cdots 03}a^{11}+\frac{20\cdots 71}{14\cdots 06}a^{10}+\frac{14\cdots 66}{72\cdots 03}a^{9}-\frac{14\cdots 18}{72\cdots 03}a^{8}-\frac{16\cdots 95}{14\cdots 06}a^{7}+\frac{84\cdots 10}{72\cdots 03}a^{6}+\frac{13\cdots 28}{72\cdots 03}a^{5}-\frac{28\cdots 91}{14\cdots 06}a^{4}-\frac{55\cdots 03}{72\cdots 03}a^{3}+\frac{13\cdots 63}{14\cdots 06}a^{2}+\frac{59\cdots 53}{72\cdots 03}a-\frac{72\cdots 58}{72\cdots 03}$, $\frac{25\cdots 77}{14\cdots 06}a^{21}-\frac{16\cdots 54}{72\cdots 03}a^{20}-\frac{24\cdots 93}{14\cdots 06}a^{19}+\frac{16\cdots 44}{72\cdots 03}a^{18}+\frac{45\cdots 14}{72\cdots 03}a^{17}-\frac{12\cdots 45}{14\cdots 06}a^{16}-\frac{78\cdots 23}{72\cdots 03}a^{15}+\frac{10\cdots 27}{72\cdots 03}a^{14}+\frac{12\cdots 89}{14\cdots 06}a^{13}-\frac{17\cdots 03}{14\cdots 06}a^{12}-\frac{23\cdots 10}{72\cdots 03}a^{11}+\frac{31\cdots 88}{72\cdots 03}a^{10}+\frac{32\cdots 49}{72\cdots 03}a^{9}-\frac{92\cdots 31}{14\cdots 06}a^{8}-\frac{17\cdots 50}{72\cdots 03}a^{7}+\frac{26\cdots 78}{72\cdots 03}a^{6}+\frac{38\cdots 97}{14\cdots 06}a^{5}-\frac{89\cdots 07}{14\cdots 06}a^{4}+\frac{86\cdots 21}{14\cdots 06}a^{3}+\frac{43\cdots 25}{14\cdots 06}a^{2}-\frac{83\cdots 87}{14\cdots 06}a-\frac{59\cdots 05}{14\cdots 06}$, $\frac{36\cdots 45}{72\cdots 03}a^{20}-\frac{35\cdots 25}{72\cdots 03}a^{18}+\frac{13\cdots 67}{72\cdots 03}a^{16}-\frac{22\cdots 13}{72\cdots 03}a^{14}+\frac{18\cdots 88}{72\cdots 03}a^{12}-\frac{67\cdots 92}{72\cdots 03}a^{10}+\frac{96\cdots 10}{72\cdots 03}a^{8}-\frac{53\cdots 08}{72\cdots 03}a^{6}+\frac{80\cdots 90}{72\cdots 03}a^{4}-\frac{24\cdots 45}{72\cdots 03}a^{2}+\frac{20\cdots 30}{72\cdots 03}$, $\frac{30\cdots 99}{72\cdots 03}a^{20}-\frac{30\cdots 96}{72\cdots 03}a^{18}+\frac{11\cdots 94}{72\cdots 03}a^{16}-\frac{19\cdots 00}{72\cdots 03}a^{14}+\frac{15\cdots 81}{72\cdots 03}a^{12}-\frac{56\cdots 93}{72\cdots 03}a^{10}+\frac{83\cdots 46}{72\cdots 03}a^{8}-\frac{47\cdots 46}{72\cdots 03}a^{6}+\frac{80\cdots 79}{72\cdots 03}a^{4}-\frac{36\cdots 75}{72\cdots 03}a^{2}+\frac{43\cdots 38}{72\cdots 03}$, $\frac{16\cdots 68}{72\cdots 03}a^{21}+\frac{10\cdots 53}{14\cdots 06}a^{20}-\frac{16\cdots 72}{72\cdots 03}a^{19}-\frac{10\cdots 63}{14\cdots 06}a^{18}+\frac{12\cdots 61}{14\cdots 06}a^{17}+\frac{37\cdots 23}{14\cdots 06}a^{16}-\frac{10\cdots 68}{72\cdots 03}a^{15}-\frac{32\cdots 61}{72\cdots 03}a^{14}+\frac{86\cdots 44}{72\cdots 03}a^{13}+\frac{26\cdots 92}{72\cdots 03}a^{12}-\frac{63\cdots 85}{14\cdots 06}a^{11}-\frac{97\cdots 73}{72\cdots 03}a^{10}+\frac{46\cdots 51}{72\cdots 03}a^{9}+\frac{28\cdots 97}{14\cdots 06}a^{8}-\frac{26\cdots 09}{72\cdots 03}a^{7}-\frac{79\cdots 20}{72\cdots 03}a^{6}+\frac{88\cdots 23}{14\cdots 06}a^{5}+\frac{12\cdots 95}{72\cdots 03}a^{4}-\frac{39\cdots 13}{14\cdots 06}a^{3}-\frac{50\cdots 08}{72\cdots 03}a^{2}+\frac{24\cdots 57}{72\cdots 03}a+\frac{77\cdots 92}{72\cdots 03}$, $\frac{37\cdots 10}{72\cdots 03}a^{21}+\frac{64\cdots 62}{72\cdots 03}a^{20}-\frac{36\cdots 96}{72\cdots 03}a^{19}-\frac{64\cdots 15}{72\cdots 03}a^{18}+\frac{27\cdots 19}{14\cdots 06}a^{17}+\frac{23\cdots 47}{72\cdots 03}a^{16}-\frac{46\cdots 99}{14\cdots 06}a^{15}-\frac{81\cdots 19}{14\cdots 06}a^{14}+\frac{38\cdots 79}{14\cdots 06}a^{13}+\frac{33\cdots 64}{72\cdots 03}a^{12}-\frac{70\cdots 33}{72\cdots 03}a^{11}-\frac{12\cdots 22}{72\cdots 03}a^{10}+\frac{10\cdots 26}{72\cdots 03}a^{9}+\frac{35\cdots 61}{14\cdots 06}a^{8}-\frac{58\cdots 39}{72\cdots 03}a^{7}-\frac{10\cdots 22}{72\cdots 03}a^{6}+\frac{19\cdots 83}{14\cdots 06}a^{5}+\frac{16\cdots 45}{72\cdots 03}a^{4}-\frac{41\cdots 26}{72\cdots 03}a^{3}-\frac{14\cdots 71}{14\cdots 06}a^{2}+\frac{45\cdots 20}{72\cdots 03}a+\frac{16\cdots 65}{14\cdots 06}$, $\frac{15\cdots 03}{14\cdots 06}a^{21}+\frac{51\cdots 51}{14\cdots 06}a^{20}-\frac{75\cdots 83}{72\cdots 03}a^{19}-\frac{50\cdots 57}{14\cdots 06}a^{18}+\frac{27\cdots 63}{72\cdots 03}a^{17}+\frac{18\cdots 33}{14\cdots 06}a^{16}-\frac{95\cdots 75}{14\cdots 06}a^{15}-\frac{16\cdots 56}{72\cdots 03}a^{14}+\frac{77\cdots 85}{14\cdots 06}a^{13}+\frac{26\cdots 27}{14\cdots 06}a^{12}-\frac{28\cdots 99}{14\cdots 06}a^{11}-\frac{97\cdots 99}{14\cdots 06}a^{10}+\frac{20\cdots 21}{72\cdots 03}a^{9}+\frac{72\cdots 79}{72\cdots 03}a^{8}-\frac{23\cdots 35}{14\cdots 06}a^{7}-\frac{42\cdots 96}{72\cdots 03}a^{6}+\frac{18\cdots 03}{72\cdots 03}a^{5}+\frac{82\cdots 64}{72\cdots 03}a^{4}-\frac{76\cdots 94}{72\cdots 03}a^{3}-\frac{50\cdots 11}{72\cdots 03}a^{2}+\frac{16\cdots 55}{14\cdots 06}a+\frac{13\cdots 75}{14\cdots 06}$, $\frac{23\cdots 58}{72\cdots 03}a^{21}-\frac{75\cdots 08}{72\cdots 03}a^{20}-\frac{46\cdots 81}{14\cdots 06}a^{19}+\frac{15\cdots 15}{14\cdots 06}a^{18}+\frac{86\cdots 50}{72\cdots 03}a^{17}-\frac{27\cdots 24}{72\cdots 03}a^{16}-\frac{29\cdots 37}{14\cdots 06}a^{15}+\frac{47\cdots 57}{72\cdots 03}a^{14}+\frac{24\cdots 03}{14\cdots 06}a^{13}-\frac{39\cdots 15}{72\cdots 03}a^{12}-\frac{44\cdots 00}{72\cdots 03}a^{11}+\frac{28\cdots 89}{14\cdots 06}a^{10}+\frac{12\cdots 57}{14\cdots 06}a^{9}-\frac{41\cdots 99}{14\cdots 06}a^{8}-\frac{73\cdots 71}{14\cdots 06}a^{7}+\frac{23\cdots 81}{14\cdots 06}a^{6}+\frac{12\cdots 55}{14\cdots 06}a^{5}-\frac{39\cdots 05}{14\cdots 06}a^{4}-\frac{53\cdots 85}{14\cdots 06}a^{3}+\frac{86\cdots 58}{72\cdots 03}a^{2}+\frac{59\cdots 23}{14\cdots 06}a-\frac{19\cdots 05}{14\cdots 06}$, $\frac{31\cdots 10}{72\cdots 03}a^{21}+\frac{26\cdots 93}{14\cdots 06}a^{20}-\frac{63\cdots 91}{14\cdots 06}a^{19}-\frac{26\cdots 27}{14\cdots 06}a^{18}+\frac{11\cdots 35}{72\cdots 03}a^{17}+\frac{49\cdots 91}{72\cdots 03}a^{16}-\frac{40\cdots 39}{14\cdots 06}a^{15}-\frac{86\cdots 88}{72\cdots 03}a^{14}+\frac{16\cdots 73}{72\cdots 03}a^{13}+\frac{72\cdots 04}{72\cdots 03}a^{12}-\frac{12\cdots 13}{14\cdots 06}a^{11}-\frac{56\cdots 91}{14\cdots 06}a^{10}+\frac{88\cdots 34}{72\cdots 03}a^{9}+\frac{93\cdots 91}{14\cdots 06}a^{8}-\frac{10\cdots 37}{14\cdots 06}a^{7}-\frac{30\cdots 04}{72\cdots 03}a^{6}+\frac{18\cdots 33}{14\cdots 06}a^{5}+\frac{10\cdots 87}{14\cdots 06}a^{4}-\frac{10\cdots 49}{14\cdots 06}a^{3}-\frac{54\cdots 67}{14\cdots 06}a^{2}+\frac{85\cdots 66}{72\cdots 03}a+\frac{61\cdots 37}{72\cdots 03}$, $\frac{84\cdots 95}{14\cdots 06}a^{21}-\frac{81\cdots 20}{72\cdots 03}a^{20}-\frac{42\cdots 94}{72\cdots 03}a^{19}+\frac{80\cdots 97}{72\cdots 03}a^{18}+\frac{15\cdots 83}{72\cdots 03}a^{17}-\frac{29\cdots 63}{72\cdots 03}a^{16}-\frac{26\cdots 51}{72\cdots 03}a^{15}+\frac{10\cdots 67}{14\cdots 06}a^{14}+\frac{21\cdots 34}{72\cdots 03}a^{13}-\frac{84\cdots 65}{14\cdots 06}a^{12}-\frac{80\cdots 83}{72\cdots 03}a^{11}+\frac{30\cdots 01}{14\cdots 06}a^{10}+\frac{11\cdots 94}{72\cdots 03}a^{9}-\frac{22\cdots 52}{72\cdots 03}a^{8}-\frac{13\cdots 13}{14\cdots 06}a^{7}+\frac{13\cdots 29}{72\cdots 03}a^{6}+\frac{12\cdots 95}{72\cdots 03}a^{5}-\frac{25\cdots 62}{72\cdots 03}a^{4}-\frac{13\cdots 27}{14\cdots 06}a^{3}+\frac{32\cdots 35}{14\cdots 06}a^{2}+\frac{22\cdots 85}{14\cdots 06}a-\frac{23\cdots 74}{72\cdots 03}$, $\frac{89\cdots 45}{72\cdots 03}a^{21}-\frac{36\cdots 75}{72\cdots 03}a^{20}-\frac{17\cdots 99}{14\cdots 06}a^{19}+\frac{36\cdots 97}{72\cdots 03}a^{18}+\frac{32\cdots 31}{72\cdots 03}a^{17}-\frac{26\cdots 41}{14\cdots 06}a^{16}-\frac{56\cdots 11}{72\cdots 03}a^{15}+\frac{46\cdots 49}{14\cdots 06}a^{14}+\frac{92\cdots 13}{14\cdots 06}a^{13}-\frac{18\cdots 26}{72\cdots 03}a^{12}-\frac{16\cdots 71}{72\cdots 03}a^{11}+\frac{13\cdots 61}{14\cdots 06}a^{10}+\frac{24\cdots 29}{72\cdots 03}a^{9}-\frac{20\cdots 05}{14\cdots 06}a^{8}-\frac{28\cdots 05}{14\cdots 06}a^{7}+\frac{57\cdots 01}{72\cdots 03}a^{6}+\frac{50\cdots 35}{14\cdots 06}a^{5}-\frac{19\cdots 09}{14\cdots 06}a^{4}-\frac{13\cdots 75}{72\cdots 03}a^{3}+\frac{45\cdots 53}{72\cdots 03}a^{2}+\frac{20\cdots 60}{72\cdots 03}a-\frac{11\cdots 13}{14\cdots 06}$, $\frac{25\cdots 77}{14\cdots 06}a^{21}+\frac{16\cdots 54}{72\cdots 03}a^{20}-\frac{24\cdots 93}{14\cdots 06}a^{19}-\frac{16\cdots 44}{72\cdots 03}a^{18}+\frac{45\cdots 14}{72\cdots 03}a^{17}+\frac{12\cdots 45}{14\cdots 06}a^{16}-\frac{78\cdots 23}{72\cdots 03}a^{15}-\frac{10\cdots 27}{72\cdots 03}a^{14}+\frac{12\cdots 89}{14\cdots 06}a^{13}+\frac{17\cdots 03}{14\cdots 06}a^{12}-\frac{23\cdots 10}{72\cdots 03}a^{11}-\frac{31\cdots 88}{72\cdots 03}a^{10}+\frac{32\cdots 49}{72\cdots 03}a^{9}+\frac{92\cdots 31}{14\cdots 06}a^{8}-\frac{17\cdots 50}{72\cdots 03}a^{7}-\frac{26\cdots 78}{72\cdots 03}a^{6}+\frac{38\cdots 97}{14\cdots 06}a^{5}+\frac{89\cdots 07}{14\cdots 06}a^{4}+\frac{86\cdots 21}{14\cdots 06}a^{3}-\frac{43\cdots 25}{14\cdots 06}a^{2}-\frac{83\cdots 87}{14\cdots 06}a+\frac{59\cdots 05}{14\cdots 06}$, $\frac{61\cdots 02}{72\cdots 03}a^{21}-\frac{10\cdots 39}{72\cdots 03}a^{20}-\frac{12\cdots 69}{14\cdots 06}a^{19}+\frac{10\cdots 56}{72\cdots 03}a^{18}+\frac{44\cdots 95}{14\cdots 06}a^{17}-\frac{80\cdots 77}{14\cdots 06}a^{16}-\frac{76\cdots 99}{14\cdots 06}a^{15}+\frac{68\cdots 39}{72\cdots 03}a^{14}+\frac{31\cdots 25}{72\cdots 03}a^{13}-\frac{56\cdots 86}{72\cdots 03}a^{12}-\frac{11\cdots 36}{72\cdots 03}a^{11}+\frac{41\cdots 67}{14\cdots 06}a^{10}+\frac{16\cdots 59}{72\cdots 03}a^{9}-\frac{30\cdots 67}{72\cdots 03}a^{8}-\frac{19\cdots 49}{14\cdots 06}a^{7}+\frac{17\cdots 49}{72\cdots 03}a^{6}+\frac{15\cdots 15}{72\cdots 03}a^{5}-\frac{57\cdots 37}{14\cdots 06}a^{4}-\frac{68\cdots 16}{72\cdots 03}a^{3}+\frac{25\cdots 05}{14\cdots 06}a^{2}+\frac{76\cdots 85}{72\cdots 03}a-\frac{14\cdots 40}{72\cdots 03}$, $\frac{11\cdots 14}{72\cdots 03}a^{21}-\frac{13\cdots 51}{14\cdots 06}a^{20}-\frac{22\cdots 99}{14\cdots 06}a^{19}+\frac{64\cdots 13}{72\cdots 03}a^{18}+\frac{81\cdots 95}{14\cdots 06}a^{17}-\frac{47\cdots 37}{14\cdots 06}a^{16}-\frac{14\cdots 63}{14\cdots 06}a^{15}+\frac{41\cdots 39}{72\cdots 03}a^{14}+\frac{11\cdots 77}{14\cdots 06}a^{13}-\frac{33\cdots 28}{72\cdots 03}a^{12}-\frac{41\cdots 57}{14\cdots 06}a^{11}+\frac{24\cdots 67}{14\cdots 06}a^{10}+\frac{61\cdots 35}{14\cdots 06}a^{9}-\frac{18\cdots 70}{72\cdots 03}a^{8}-\frac{34\cdots 37}{14\cdots 06}a^{7}+\frac{21\cdots 37}{14\cdots 06}a^{6}+\frac{28\cdots 71}{72\cdots 03}a^{5}-\frac{38\cdots 27}{14\cdots 06}a^{4}-\frac{11\cdots 26}{72\cdots 03}a^{3}+\frac{10\cdots 90}{72\cdots 03}a^{2}+\frac{26\cdots 25}{14\cdots 06}a-\frac{25\cdots 29}{14\cdots 06}$, $\frac{43\cdots 91}{14\cdots 06}a^{21}-\frac{60\cdots 55}{14\cdots 06}a^{20}-\frac{43\cdots 71}{14\cdots 06}a^{19}+\frac{30\cdots 45}{72\cdots 03}a^{18}+\frac{15\cdots 63}{14\cdots 06}a^{17}-\frac{22\cdots 25}{14\cdots 06}a^{16}-\frac{27\cdots 27}{14\cdots 06}a^{15}+\frac{38\cdots 75}{14\cdots 06}a^{14}+\frac{22\cdots 39}{14\cdots 06}a^{13}-\frac{31\cdots 13}{14\cdots 06}a^{12}-\frac{82\cdots 21}{14\cdots 06}a^{11}+\frac{57\cdots 87}{72\cdots 03}a^{10}+\frac{12\cdots 49}{14\cdots 06}a^{9}-\frac{83\cdots 78}{72\cdots 03}a^{8}-\frac{34\cdots 80}{72\cdots 03}a^{7}+\frac{95\cdots 19}{14\cdots 06}a^{6}+\frac{58\cdots 27}{72\cdots 03}a^{5}-\frac{16\cdots 51}{14\cdots 06}a^{4}-\frac{56\cdots 15}{14\cdots 06}a^{3}+\frac{77\cdots 09}{14\cdots 06}a^{2}+\frac{38\cdots 16}{72\cdots 03}a-\frac{10\cdots 09}{14\cdots 06}$, $\frac{38\cdots 17}{72\cdots 03}a^{21}-\frac{86\cdots 47}{14\cdots 06}a^{20}-\frac{76\cdots 83}{14\cdots 06}a^{19}+\frac{85\cdots 11}{14\cdots 06}a^{18}+\frac{14\cdots 28}{72\cdots 03}a^{17}-\frac{15\cdots 06}{72\cdots 03}a^{16}-\frac{48\cdots 79}{14\cdots 06}a^{15}+\frac{27\cdots 56}{72\cdots 03}a^{14}+\frac{19\cdots 52}{72\cdots 03}a^{13}-\frac{22\cdots 96}{72\cdots 03}a^{12}-\frac{14\cdots 23}{14\cdots 06}a^{11}+\frac{16\cdots 71}{14\cdots 06}a^{10}+\frac{10\cdots 10}{72\cdots 03}a^{9}-\frac{24\cdots 07}{14\cdots 06}a^{8}-\frac{12\cdots 25}{14\cdots 06}a^{7}+\frac{70\cdots 96}{72\cdots 03}a^{6}+\frac{21\cdots 07}{14\cdots 06}a^{5}-\frac{24\cdots 71}{14\cdots 06}a^{4}-\frac{10\cdots 43}{14\cdots 06}a^{3}+\frac{13\cdots 51}{14\cdots 06}a^{2}+\frac{75\cdots 69}{72\cdots 03}a-\frac{95\cdots 24}{72\cdots 03}$, $\frac{95\cdots 01}{14\cdots 06}a^{21}-\frac{60\cdots 44}{72\cdots 03}a^{20}-\frac{47\cdots 69}{72\cdots 03}a^{19}+\frac{11\cdots 39}{14\cdots 06}a^{18}+\frac{17\cdots 23}{72\cdots 03}a^{17}-\frac{44\cdots 51}{14\cdots 06}a^{16}-\frac{60\cdots 59}{14\cdots 06}a^{15}+\frac{38\cdots 34}{72\cdots 03}a^{14}+\frac{24\cdots 70}{72\cdots 03}a^{13}-\frac{62\cdots 29}{14\cdots 06}a^{12}-\frac{89\cdots 07}{72\cdots 03}a^{11}+\frac{22\cdots 83}{14\cdots 06}a^{10}+\frac{26\cdots 67}{14\cdots 06}a^{9}-\frac{16\cdots 64}{72\cdots 03}a^{8}-\frac{14\cdots 57}{14\cdots 06}a^{7}+\frac{19\cdots 89}{14\cdots 06}a^{6}+\frac{12\cdots 92}{72\cdots 03}a^{5}-\frac{15\cdots 10}{72\cdots 03}a^{4}-\frac{53\cdots 49}{72\cdots 03}a^{3}+\frac{14\cdots 83}{14\cdots 06}a^{2}+\frac{58\cdots 78}{72\cdots 03}a-\frac{81\cdots 80}{72\cdots 03}$
|
| |
| Regulator: | \( 165654542977000000 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{22}\cdot(2\pi)^{0}\cdot 165654542977000000 \cdot 1}{2\cdot\sqrt{90463257479444681369926681096111744478113640448}}\cr\approx \mathstrut & 1.15504032992262 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}.C_{11}:C_{10}$ (as 22T36):
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for $C_2^{10}.C_{11}:C_{10}$ |
| Character table for $C_2^{10}.C_{11}:C_{10}$ |
Intermediate fields
| 11.11.2713285598714072534889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.10.0.1}{10} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/13.5.0.1}{5} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.5.0.1}{5} }^{4}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.5.0.1}{5} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.11.0.1}{11} }^{2}$ | ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.10.0.1}{10} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/padicField/47.5.0.1}{5} }^{4}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.5.1.0a1.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
| 2.5.1.0a1.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
| 2.5.2.10a2.2 | $x^{10} + 2 x^{7} + 2 x^{6} + 2 x^{5} + x^{4} + 2 x^{3} + 6 x^{2} + 2 x + 3$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $$[2, 2, 2, 2]^{10}$$ | |
|
\(3\)
| 3.1.22.21a1.2 | $x^{22} + 6$ | $22$ | $1$ | $21$ | 22T5 | $$[\ ]_{22}^{5}$$ |
|
\(11\)
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |