\\ Pari/GP code for working with number field 22.22.90463257479444681369926681096111744478113640448.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^22 - 99*y^20 + 3663*y^18 - 62997*y^16 + 515625*y^14 - 1891296*y^12 + 2785728*y^10 - 1631619*y^8 + 296538*y^6 - 17523*y^4 + 396*y^2 - 3, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^22 - 99*x^20 + 3663*x^18 - 62997*x^16 + 515625*x^14 - 1891296*x^12 + 2785728*x^10 - 1631619*x^8 + 296538*x^6 - 17523*x^4 + 396*x^2 - 3, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(L)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])