Normalized defining polynomial
\( x^{22} - 10 x^{20} + 45 x^{18} - 125 x^{16} + 250 x^{14} - 392 x^{12} + 498 x^{10} - 516 x^{8} + \cdots - 23 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[2, 10]$ |
| |
| Discriminant: |
\(1627617880014561481407655313408\)
\(\medspace = 2^{22}\cdot 23\cdot 167^{10}\)
|
| |
| Root discriminant: | \(23.62\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(23\), \(167\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{23}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{13}a^{20}-\frac{5}{13}a^{18}-\frac{6}{13}a^{16}+\frac{1}{13}a^{14}-\frac{5}{13}a^{12}-\frac{1}{13}a^{10}-\frac{1}{13}a^{8}-\frac{1}{13}a^{6}-\frac{6}{13}a^{4}+\frac{5}{13}a^{2}+\frac{2}{13}$, $\frac{1}{13}a^{21}-\frac{5}{13}a^{19}-\frac{6}{13}a^{17}+\frac{1}{13}a^{15}-\frac{5}{13}a^{13}-\frac{1}{13}a^{11}-\frac{1}{13}a^{9}-\frac{1}{13}a^{7}-\frac{6}{13}a^{5}+\frac{5}{13}a^{3}+\frac{2}{13}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $11$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{2}-1$, $\frac{64}{13}a^{20}-\frac{541}{13}a^{18}+\frac{2047}{13}a^{16}-\frac{4863}{13}a^{14}+\frac{8572}{13}a^{12}-\frac{12011}{13}a^{10}+\frac{13560}{13}a^{8}-\frac{12362}{13}a^{6}+\frac{8547}{13}a^{4}-\frac{3853}{13}a^{2}+\frac{934}{13}$, $\frac{138}{13}a^{20}-\frac{1158}{13}a^{18}+\frac{4346}{13}a^{16}-\frac{10249}{13}a^{14}+\frac{17978}{13}a^{12}-\frac{25098}{13}a^{10}+\frac{28215}{13}a^{8}-\frac{25631}{13}a^{6}+\frac{17632}{13}a^{4}-\frac{7903}{13}a^{2}+\frac{1966}{13}$, $\frac{174}{13}a^{20}-\frac{1468}{13}a^{18}+\frac{5534}{13}a^{16}-\frac{13086}{13}a^{14}+\frac{22985}{13}a^{12}-\frac{32128}{13}a^{10}+\frac{36161}{13}a^{8}-\frac{32869}{13}a^{6}+\frac{22642}{13}a^{4}-\frac{10141}{13}a^{2}+\frac{2493}{13}$, $\frac{102}{13}a^{20}-\frac{861}{13}a^{18}+\frac{3249}{13}a^{16}-\frac{7698}{13}a^{14}+\frac{13556}{13}a^{12}-\frac{18991}{13}a^{10}+\frac{21426}{13}a^{8}-\frac{19537}{13}a^{6}+\frac{13519}{13}a^{4}-\frac{6120}{13}a^{2}+\frac{1530}{13}$, $a+1$, $\frac{40}{13}a^{20}-\frac{343}{13}a^{18}+\frac{1307}{13}a^{16}-\frac{3106}{13}a^{14}+\frac{5468}{13}a^{12}-\frac{7658}{13}a^{10}+\frac{8631}{13}a^{8}-\frac{7866}{13}a^{6}+\frac{5441}{13}a^{4}-\frac{2439}{13}a^{2}-a+\frac{613}{13}$, $\frac{174}{13}a^{21}-\frac{230}{13}a^{20}-\frac{1468}{13}a^{19}+\frac{1930}{13}a^{18}+\frac{5534}{13}a^{17}-\frac{7239}{13}a^{16}-\frac{13086}{13}a^{15}+\frac{17060}{13}a^{14}+\frac{22985}{13}a^{13}-\frac{29920}{13}a^{12}-\frac{32128}{13}a^{11}+\frac{41778}{13}a^{10}+\frac{36161}{13}a^{9}-\frac{46986}{13}a^{8}-\frac{32869}{13}a^{7}+\frac{42714}{13}a^{6}+\frac{22642}{13}a^{5}-\frac{29417}{13}a^{4}-\frac{10141}{13}a^{3}+\frac{13228}{13}a^{2}+\frac{2480}{13}a-\frac{3320}{13}$, $\frac{21}{13}a^{21}-\frac{34}{13}a^{20}-\frac{170}{13}a^{19}+\frac{287}{13}a^{18}+\frac{615}{13}a^{17}-\frac{1083}{13}a^{16}-\frac{1409}{13}a^{15}+\frac{2566}{13}a^{14}+\frac{2430}{13}a^{13}-\frac{4523}{13}a^{12}-\frac{3349}{13}a^{11}+\frac{6352}{13}a^{10}+\frac{3710}{13}a^{9}-\frac{7181}{13}a^{8}-\frac{3323}{13}a^{7}+\frac{6560}{13}a^{6}+\frac{2240}{13}a^{5}-\frac{4567}{13}a^{4}-\frac{974}{13}a^{3}+\frac{2092}{13}a^{2}+\frac{237}{13}a-\frac{536}{13}$, $\frac{125}{13}a^{21}+\frac{138}{13}a^{20}-\frac{1054}{13}a^{19}-\frac{1171}{13}a^{18}+\frac{3969}{13}a^{17}+\frac{4437}{13}a^{16}-\frac{9378}{13}a^{15}-\frac{10535}{13}a^{14}+\frac{16470}{13}a^{13}+\frac{18563}{13}a^{12}-\frac{23018}{13}a^{11}-\frac{26021}{13}a^{10}+\frac{25901}{13}a^{9}+\frac{29372}{13}a^{8}-\frac{23551}{13}a^{7}-\frac{26788}{13}a^{6}+\frac{16228}{13}a^{5}+\frac{18542}{13}a^{4}-\frac{7279}{13}a^{3}-\frac{8371}{13}a^{2}+\frac{1810}{13}a+\frac{2096}{13}$, $\frac{374}{13}a^{21}-\frac{428}{13}a^{20}-\frac{3157}{13}a^{19}+\frac{3609}{13}a^{18}+\frac{11913}{13}a^{17}-\frac{13604}{13}a^{16}-\frac{28213}{13}a^{15}+\frac{32189}{13}a^{14}+\frac{49636}{13}a^{13}-\frac{56594}{13}a^{12}-\frac{69482}{13}a^{11}+\frac{79169}{13}a^{10}+\frac{78341}{13}a^{9}-\frac{89194}{13}a^{8}-\frac{71367}{13}a^{7}+\frac{81197}{13}a^{6}+\frac{49301}{13}a^{5}-\frac{56049}{13}a^{4}-\frac{22219}{13}a^{3}+\frac{25251}{13}a^{2}+\frac{5519}{13}a-\frac{6290}{13}$
|
| |
| Regulator: | \( 1255829.15878 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{10}\cdot 1255829.15878 \cdot 1}{2\cdot\sqrt{1627617880014561481407655313408}}\cr\approx \mathstrut & 0.188791751583 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}.D_{22}$ (as 22T32):
| A solvable group of order 45056 |
| The 200 conjugacy class representatives for $C_2^{10}.D_{22}$ |
| Character table for $C_2^{10}.D_{22}$ |
Intermediate fields
| 11.1.129891985607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{7}$ | ${\href{/padicField/7.11.0.1}{11} }^{2}$ | ${\href{/padicField/11.11.0.1}{11} }^{2}$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{9}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{7}$ | ${\href{/padicField/19.11.0.1}{11} }^{2}$ | R | ${\href{/padicField/29.11.0.1}{11} }^{2}$ | $22$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{7}$ | ${\href{/padicField/41.4.0.1}{4} }^{3}{,}\,{\href{/padicField/41.2.0.1}{2} }^{5}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{5}$ | $22$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{7}$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{8}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.11.2.22a127.1 | $x^{22} + 2 x^{21} + 2 x^{19} + 2 x^{17} + 2 x^{15} + 2 x^{13} + 2 x^{12} + 2 x^{11} + 4 x^{10} + 4 x^{8} + 4 x^{6} + 3 x^{4} + 2 x^{2} + 3$ | $2$ | $11$ | $22$ | not computed | not computed |
|
\(23\)
| 23.1.2.1a1.1 | $x^{2} + 23$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 23.2.1.0a1.1 | $x^{2} + 21 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 23.4.1.0a1.1 | $x^{4} + 3 x^{2} + 19 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 23.4.1.0a1.1 | $x^{4} + 3 x^{2} + 19 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 23.4.1.0a1.1 | $x^{4} + 3 x^{2} + 19 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(167\)
| 167.2.1.0a1.1 | $x^{2} + 166 x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 167.1.2.1a1.1 | $x^{2} + 167$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 167.1.2.1a1.1 | $x^{2} + 167$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 167.1.2.1a1.1 | $x^{2} + 167$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 167.1.2.1a1.1 | $x^{2} + 167$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 167.1.2.1a1.1 | $x^{2} + 167$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 167.1.2.1a1.1 | $x^{2} + 167$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 167.2.2.2a1.2 | $x^{4} + 332 x^{3} + 27566 x^{2} + 1660 x + 192$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 167.2.2.2a1.2 | $x^{4} + 332 x^{3} + 27566 x^{2} + 1660 x + 192$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |