Show commands: Magma
Group invariants
| Abstract group: | $C_2^{10}.D_{22}$ |
| |
| Order: | $45056=2^{12} \cdot 11$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $22$ |
| |
| Transitive number $t$: | $32$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,6)(2,5)(7,22)(8,21)(9,20,10,19)(11,17)(12,18)(13,16)(14,15)$, $(1,4)(2,3)(5,21)(6,22)(7,19,8,20)(9,18,10,17)(11,16,12,15)(13,14)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $22$: $D_{11}$ $44$: $D_{22}$ $22528$: 22T29 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 11: $D_{11}$
Low degree siblings
22T32 x 61, 44T236 x 31, 44T239 x 31, 44T240 x 62, 44T241 x 62, 44T266 x 310, 44T267 x 310, 44T268 x 310, 44T269 x 31, 44T270 x 155, 44T271 x 155, 44T272 x 155, 44T273 x 310, 44T274 x 310, 44T275 x 310Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed