Normalized defining polynomial
\( x^{22} - 7 x^{21} - 9 x^{20} + 171 x^{19} - 276 x^{18} - 1022 x^{17} + 3668 x^{16} - 1134 x^{15} + \cdots + 68279 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[14, 4]$ |
| |
| Discriminant: |
\(22661033510180079603495293971842498241\)
\(\medspace = 1297^{12}\)
|
| |
| Root discriminant: | \(49.88\) |
| |
| Galois root discriminant: | $1297^{3/4}\approx 216.12498794754728$ | ||
| Ramified primes: |
\(1297\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{25}a^{20}+\frac{6}{25}a^{19}-\frac{1}{5}a^{18}+\frac{12}{25}a^{17}-\frac{2}{5}a^{15}-\frac{12}{25}a^{14}-\frac{2}{5}a^{11}+\frac{6}{25}a^{10}-\frac{1}{25}a^{9}+\frac{6}{25}a^{7}+\frac{1}{5}a^{6}+\frac{9}{25}a^{5}+\frac{2}{25}a^{4}+\frac{8}{25}a^{3}-\frac{8}{25}a^{2}+\frac{8}{25}a-\frac{4}{25}$, $\frac{1}{31\cdots 75}a^{21}-\frac{17\cdots 41}{31\cdots 75}a^{20}+\frac{38\cdots 63}{31\cdots 75}a^{19}+\frac{11\cdots 47}{31\cdots 75}a^{18}-\frac{83\cdots 14}{31\cdots 75}a^{17}+\frac{27\cdots 93}{63\cdots 35}a^{16}-\frac{12\cdots 17}{31\cdots 75}a^{15}+\frac{12\cdots 14}{31\cdots 75}a^{14}-\frac{12\cdots 49}{12\cdots 87}a^{13}-\frac{89\cdots 12}{63\cdots 35}a^{12}-\frac{85\cdots 74}{31\cdots 75}a^{11}-\frac{89\cdots 58}{31\cdots 75}a^{10}+\frac{62\cdots 47}{31\cdots 75}a^{9}-\frac{21\cdots 19}{31\cdots 75}a^{8}-\frac{79\cdots 02}{31\cdots 75}a^{7}+\frac{23\cdots 99}{31\cdots 75}a^{6}+\frac{51\cdots 29}{31\cdots 75}a^{5}+\frac{11\cdots 64}{31\cdots 75}a^{4}+\frac{53\cdots 91}{31\cdots 75}a^{3}-\frac{56\cdots 91}{31\cdots 75}a^{2}-\frac{24\cdots 46}{63\cdots 35}a-\frac{99\cdots 62}{31\cdots 75}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{23\cdots 06}{31\cdots 75}a^{21}-\frac{36\cdots 33}{63\cdots 35}a^{20}-\frac{48\cdots 61}{31\cdots 75}a^{19}+\frac{39\cdots 27}{31\cdots 75}a^{18}-\frac{97\cdots 87}{31\cdots 75}a^{17}-\frac{29\cdots 82}{63\cdots 35}a^{16}+\frac{95\cdots 13}{31\cdots 75}a^{15}-\frac{10\cdots 88}{31\cdots 75}a^{14}-\frac{57\cdots 85}{12\cdots 87}a^{13}+\frac{10\cdots 43}{63\cdots 35}a^{12}-\frac{89\cdots 79}{31\cdots 75}a^{11}+\frac{88\cdots 63}{31\cdots 75}a^{10}+\frac{16\cdots 51}{31\cdots 75}a^{9}-\frac{73\cdots 14}{31\cdots 75}a^{8}+\frac{59\cdots 24}{31\cdots 75}a^{7}+\frac{98\cdots 24}{31\cdots 75}a^{6}-\frac{17\cdots 97}{31\cdots 75}a^{5}-\frac{13\cdots 54}{31\cdots 75}a^{4}+\frac{14\cdots 94}{31\cdots 75}a^{3}-\frac{22\cdots 19}{31\cdots 75}a^{2}-\frac{29\cdots 57}{31\cdots 75}a+\frac{76\cdots 29}{31\cdots 75}$, $\frac{61\cdots 51}{31\cdots 75}a^{21}-\frac{47\cdots 54}{31\cdots 75}a^{20}-\frac{47\cdots 48}{63\cdots 35}a^{19}+\frac{10\cdots 62}{31\cdots 75}a^{18}-\frac{47\cdots 89}{63\cdots 35}a^{17}-\frac{87\cdots 47}{63\cdots 35}a^{16}+\frac{24\cdots 13}{31\cdots 75}a^{15}-\frac{48\cdots 41}{63\cdots 35}a^{14}-\frac{16\cdots 08}{12\cdots 87}a^{13}+\frac{27\cdots 88}{63\cdots 35}a^{12}-\frac{21\cdots 94}{31\cdots 75}a^{11}+\frac{19\cdots 64}{31\cdots 75}a^{10}+\frac{95\cdots 62}{63\cdots 35}a^{9}-\frac{18\cdots 19}{31\cdots 75}a^{8}+\frac{25\cdots 69}{63\cdots 35}a^{7}+\frac{27\cdots 84}{31\cdots 75}a^{6}-\frac{43\cdots 38}{31\cdots 75}a^{5}-\frac{80\cdots 12}{31\cdots 75}a^{4}+\frac{36\cdots 87}{31\cdots 75}a^{3}-\frac{55\cdots 37}{31\cdots 75}a^{2}-\frac{80\cdots 34}{31\cdots 75}a+\frac{42\cdots 78}{63\cdots 35}$, $\frac{14\cdots 28}{63\cdots 35}a^{21}-\frac{13\cdots 82}{31\cdots 75}a^{20}-\frac{34\cdots 82}{31\cdots 75}a^{19}+\frac{19\cdots 68}{63\cdots 35}a^{18}+\frac{43\cdots 86}{31\cdots 75}a^{17}-\frac{77\cdots 03}{12\cdots 87}a^{16}-\frac{10\cdots 87}{63\cdots 35}a^{15}+\frac{12\cdots 39}{31\cdots 75}a^{14}-\frac{67\cdots 35}{12\cdots 87}a^{13}-\frac{61\cdots 18}{12\cdots 87}a^{12}+\frac{11\cdots 97}{63\cdots 35}a^{11}-\frac{10\cdots 22}{31\cdots 75}a^{10}+\frac{15\cdots 72}{31\cdots 75}a^{9}+\frac{26\cdots 83}{63\cdots 35}a^{8}-\frac{10\cdots 57}{31\cdots 75}a^{7}+\frac{32\cdots 24}{12\cdots 87}a^{6}+\frac{15\cdots 32}{31\cdots 75}a^{5}-\frac{24\cdots 49}{31\cdots 75}a^{4}-\frac{82\cdots 71}{31\cdots 75}a^{3}+\frac{19\cdots 21}{31\cdots 75}a^{2}+\frac{89\cdots 14}{31\cdots 75}a-\frac{44\cdots 62}{31\cdots 75}$, $\frac{14\cdots 74}{31\cdots 75}a^{21}-\frac{21\cdots 69}{63\cdots 35}a^{20}-\frac{64\cdots 79}{31\cdots 75}a^{19}+\frac{23\cdots 08}{31\cdots 75}a^{18}-\frac{51\cdots 93}{31\cdots 75}a^{17}-\frac{20\cdots 43}{63\cdots 35}a^{16}+\frac{53\cdots 77}{31\cdots 75}a^{15}-\frac{50\cdots 82}{31\cdots 75}a^{14}-\frac{38\cdots 12}{12\cdots 87}a^{13}+\frac{59\cdots 22}{63\cdots 35}a^{12}-\frac{46\cdots 41}{31\cdots 75}a^{11}+\frac{41\cdots 67}{31\cdots 75}a^{10}+\frac{10\cdots 39}{31\cdots 75}a^{9}-\frac{40\cdots 81}{31\cdots 75}a^{8}+\frac{25\cdots 11}{31\cdots 75}a^{7}+\frac{61\cdots 46}{31\cdots 75}a^{6}-\frac{89\cdots 78}{31\cdots 75}a^{5}-\frac{22\cdots 86}{31\cdots 75}a^{4}+\frac{72\cdots 46}{31\cdots 75}a^{3}-\frac{61\cdots 21}{31\cdots 75}a^{2}-\frac{14\cdots 58}{31\cdots 75}a+\frac{19\cdots 56}{31\cdots 75}$, $\frac{21\cdots 96}{31\cdots 75}a^{21}-\frac{19\cdots 82}{31\cdots 75}a^{20}+\frac{21\cdots 22}{31\cdots 75}a^{19}+\frac{36\cdots 92}{31\cdots 75}a^{18}-\frac{14\cdots 21}{31\cdots 75}a^{17}+\frac{68\cdots 93}{63\cdots 35}a^{16}+\frac{10\cdots 28}{31\cdots 75}a^{15}-\frac{23\cdots 79}{31\cdots 75}a^{14}+\frac{82\cdots 09}{12\cdots 87}a^{13}+\frac{14\cdots 73}{63\cdots 35}a^{12}-\frac{16\cdots 69}{31\cdots 75}a^{11}+\frac{20\cdots 56}{31\cdots 75}a^{10}+\frac{28\cdots 33}{31\cdots 75}a^{9}-\frac{91\cdots 74}{31\cdots 75}a^{8}+\frac{15\cdots 32}{31\cdots 75}a^{7}+\frac{66\cdots 74}{31\cdots 75}a^{6}-\frac{61\cdots 41}{63\cdots 35}a^{5}+\frac{24\cdots 52}{31\cdots 75}a^{4}+\frac{16\cdots 43}{31\cdots 75}a^{3}-\frac{24\cdots 93}{31\cdots 75}a^{2}+\frac{18\cdots 77}{31\cdots 75}a+\frac{54\cdots 07}{31\cdots 75}$, $\frac{23\cdots 06}{31\cdots 75}a^{21}-\frac{36\cdots 33}{63\cdots 35}a^{20}-\frac{48\cdots 61}{31\cdots 75}a^{19}+\frac{39\cdots 27}{31\cdots 75}a^{18}-\frac{97\cdots 87}{31\cdots 75}a^{17}-\frac{29\cdots 82}{63\cdots 35}a^{16}+\frac{95\cdots 13}{31\cdots 75}a^{15}-\frac{10\cdots 88}{31\cdots 75}a^{14}-\frac{57\cdots 85}{12\cdots 87}a^{13}+\frac{10\cdots 43}{63\cdots 35}a^{12}-\frac{89\cdots 79}{31\cdots 75}a^{11}+\frac{88\cdots 63}{31\cdots 75}a^{10}+\frac{16\cdots 51}{31\cdots 75}a^{9}-\frac{73\cdots 14}{31\cdots 75}a^{8}+\frac{59\cdots 24}{31\cdots 75}a^{7}+\frac{98\cdots 24}{31\cdots 75}a^{6}-\frac{17\cdots 97}{31\cdots 75}a^{5}-\frac{13\cdots 54}{31\cdots 75}a^{4}+\frac{14\cdots 94}{31\cdots 75}a^{3}-\frac{22\cdots 19}{31\cdots 75}a^{2}-\frac{29\cdots 57}{31\cdots 75}a+\frac{39\cdots 04}{31\cdots 75}$, $\frac{16\cdots 96}{31\cdots 75}a^{21}-\frac{10\cdots 23}{31\cdots 75}a^{20}-\frac{16\cdots 24}{31\cdots 75}a^{19}+\frac{25\cdots 47}{31\cdots 75}a^{18}-\frac{37\cdots 88}{31\cdots 75}a^{17}-\frac{30\cdots 92}{63\cdots 35}a^{16}+\frac{48\cdots 13}{31\cdots 75}a^{15}-\frac{14\cdots 12}{31\cdots 75}a^{14}-\frac{49\cdots 96}{12\cdots 87}a^{13}+\frac{45\cdots 03}{63\cdots 35}a^{12}-\frac{31\cdots 84}{31\cdots 75}a^{11}+\frac{42\cdots 17}{63\cdots 35}a^{10}+\frac{13\cdots 24}{31\cdots 75}a^{9}-\frac{34\cdots 99}{31\cdots 75}a^{8}-\frac{25\cdots 14}{31\cdots 75}a^{7}+\frac{69\cdots 44}{31\cdots 75}a^{6}-\frac{33\cdots 24}{31\cdots 75}a^{5}-\frac{15\cdots 76}{63\cdots 35}a^{4}+\frac{30\cdots 43}{63\cdots 35}a^{3}+\frac{97\cdots 67}{63\cdots 35}a^{2}+\frac{72\cdots 49}{31\cdots 75}a-\frac{14\cdots 04}{31\cdots 75}$, $\frac{15\cdots 48}{31\cdots 75}a^{21}-\frac{12\cdots 16}{31\cdots 75}a^{20}-\frac{23\cdots 89}{31\cdots 75}a^{19}+\frac{27\cdots 21}{31\cdots 75}a^{18}-\frac{68\cdots 23}{31\cdots 75}a^{17}-\frac{18\cdots 81}{63\cdots 35}a^{16}+\frac{65\cdots 89}{31\cdots 75}a^{15}-\frac{80\cdots 52}{31\cdots 75}a^{14}-\frac{36\cdots 57}{12\cdots 87}a^{13}+\frac{77\cdots 64}{63\cdots 35}a^{12}-\frac{65\cdots 72}{31\cdots 75}a^{11}+\frac{64\cdots 53}{31\cdots 75}a^{10}+\frac{10\cdots 29}{31\cdots 75}a^{9}-\frac{51\cdots 87}{31\cdots 75}a^{8}+\frac{46\cdots 41}{31\cdots 75}a^{7}+\frac{63\cdots 87}{31\cdots 75}a^{6}-\frac{26\cdots 83}{63\cdots 35}a^{5}+\frac{76\cdots 01}{31\cdots 75}a^{4}+\frac{10\cdots 34}{31\cdots 75}a^{3}-\frac{38\cdots 09}{31\cdots 75}a^{2}-\frac{22\cdots 24}{31\cdots 75}a+\frac{94\cdots 41}{31\cdots 75}$, $\frac{49\cdots 57}{31\cdots 75}a^{21}-\frac{78\cdots 31}{63\cdots 35}a^{20}-\frac{95\cdots 17}{31\cdots 75}a^{19}+\frac{85\cdots 19}{31\cdots 75}a^{18}-\frac{21\cdots 89}{31\cdots 75}a^{17}-\frac{61\cdots 14}{63\cdots 35}a^{16}+\frac{20\cdots 11}{31\cdots 75}a^{15}-\frac{24\cdots 61}{31\cdots 75}a^{14}-\frac{12\cdots 98}{12\cdots 87}a^{13}+\frac{24\cdots 66}{63\cdots 35}a^{12}-\frac{20\cdots 13}{31\cdots 75}a^{11}+\frac{19\cdots 36}{31\cdots 75}a^{10}+\frac{35\cdots 72}{31\cdots 75}a^{9}-\frac{16\cdots 33}{31\cdots 75}a^{8}+\frac{13\cdots 53}{31\cdots 75}a^{7}+\frac{20\cdots 03}{31\cdots 75}a^{6}-\frac{41\cdots 84}{31\cdots 75}a^{5}+\frac{41\cdots 12}{31\cdots 75}a^{4}+\frac{33\cdots 93}{31\cdots 75}a^{3}-\frac{10\cdots 43}{31\cdots 75}a^{2}-\frac{74\cdots 29}{31\cdots 75}a+\frac{22\cdots 63}{31\cdots 75}$, $\frac{28\cdots 36}{31\cdots 75}a^{21}-\frac{17\cdots 57}{31\cdots 75}a^{20}-\frac{39\cdots 68}{31\cdots 75}a^{19}+\frac{45\cdots 72}{31\cdots 75}a^{18}-\frac{43\cdots 26}{31\cdots 75}a^{17}-\frac{66\cdots 77}{63\cdots 35}a^{16}+\frac{81\cdots 73}{31\cdots 75}a^{15}+\frac{31\cdots 26}{31\cdots 75}a^{14}-\frac{12\cdots 35}{12\cdots 87}a^{13}+\frac{72\cdots 83}{63\cdots 35}a^{12}-\frac{20\cdots 29}{31\cdots 75}a^{11}-\frac{29\cdots 24}{31\cdots 75}a^{10}+\frac{31\cdots 73}{31\cdots 75}a^{9}-\frac{55\cdots 59}{31\cdots 75}a^{8}-\frac{49\cdots 58}{31\cdots 75}a^{7}+\frac{18\cdots 09}{31\cdots 75}a^{6}-\frac{50\cdots 82}{63\cdots 35}a^{5}-\frac{26\cdots 83}{31\cdots 75}a^{4}+\frac{75\cdots 53}{31\cdots 75}a^{3}+\frac{16\cdots 47}{31\cdots 75}a^{2}-\frac{32\cdots 53}{31\cdots 75}a-\frac{35\cdots 33}{31\cdots 75}$, $\frac{97\cdots 94}{31\cdots 75}a^{21}-\frac{72\cdots 02}{31\cdots 75}a^{20}-\frac{51\cdots 16}{31\cdots 75}a^{19}+\frac{16\cdots 33}{31\cdots 75}a^{18}-\frac{34\cdots 17}{31\cdots 75}a^{17}-\frac{15\cdots 73}{63\cdots 35}a^{16}+\frac{37\cdots 57}{31\cdots 75}a^{15}-\frac{31\cdots 08}{31\cdots 75}a^{14}-\frac{29\cdots 01}{12\cdots 87}a^{13}+\frac{41\cdots 92}{63\cdots 35}a^{12}-\frac{30\cdots 76}{31\cdots 75}a^{11}+\frac{48\cdots 12}{63\cdots 35}a^{10}+\frac{82\cdots 66}{31\cdots 75}a^{9}-\frac{28\cdots 36}{31\cdots 75}a^{8}+\frac{14\cdots 49}{31\cdots 75}a^{7}+\frac{46\cdots 66}{31\cdots 75}a^{6}-\frac{61\cdots 56}{31\cdots 75}a^{5}-\frac{46\cdots 56}{63\cdots 35}a^{4}+\frac{11\cdots 99}{63\cdots 35}a^{3}-\frac{11\cdots 59}{63\cdots 35}a^{2}-\frac{12\cdots 04}{31\cdots 75}a+\frac{79\cdots 39}{31\cdots 75}$, $\frac{91\cdots 89}{31\cdots 75}a^{21}-\frac{60\cdots 63}{31\cdots 75}a^{20}-\frac{10\cdots 52}{31\cdots 75}a^{19}+\frac{14\cdots 53}{31\cdots 75}a^{18}-\frac{19\cdots 14}{31\cdots 75}a^{17}-\frac{18\cdots 93}{63\cdots 35}a^{16}+\frac{28\cdots 27}{31\cdots 75}a^{15}-\frac{39\cdots 86}{31\cdots 75}a^{14}-\frac{33\cdots 71}{12\cdots 87}a^{13}+\frac{27\cdots 62}{63\cdots 35}a^{12}-\frac{15\cdots 96}{31\cdots 75}a^{11}+\frac{44\cdots 54}{31\cdots 75}a^{10}+\frac{89\cdots 47}{31\cdots 75}a^{9}-\frac{20\cdots 91}{31\cdots 75}a^{8}-\frac{50\cdots 87}{31\cdots 75}a^{7}+\frac{48\cdots 16}{31\cdots 75}a^{6}-\frac{44\cdots 99}{63\cdots 35}a^{5}-\frac{55\cdots 57}{31\cdots 75}a^{4}+\frac{24\cdots 87}{31\cdots 75}a^{3}+\frac{28\cdots 88}{31\cdots 75}a^{2}-\frac{44\cdots 32}{31\cdots 75}a-\frac{42\cdots 37}{31\cdots 75}$, $\frac{53\cdots 89}{31\cdots 75}a^{21}-\frac{76\cdots 47}{63\cdots 35}a^{20}-\frac{41\cdots 59}{31\cdots 75}a^{19}+\frac{91\cdots 38}{31\cdots 75}a^{18}-\frac{16\cdots 78}{31\cdots 75}a^{17}-\frac{99\cdots 78}{63\cdots 35}a^{16}+\frac{19\cdots 72}{31\cdots 75}a^{15}-\frac{10\cdots 97}{31\cdots 75}a^{14}-\frac{20\cdots 69}{12\cdots 87}a^{13}+\frac{22\cdots 27}{63\cdots 35}a^{12}-\frac{12\cdots 01}{31\cdots 75}a^{11}+\frac{54\cdots 22}{31\cdots 75}a^{10}+\frac{55\cdots 44}{31\cdots 75}a^{9}-\frac{15\cdots 41}{31\cdots 75}a^{8}+\frac{29\cdots 56}{31\cdots 75}a^{7}+\frac{32\cdots 31}{31\cdots 75}a^{6}-\frac{31\cdots 68}{31\cdots 75}a^{5}-\frac{26\cdots 76}{31\cdots 75}a^{4}+\frac{35\cdots 61}{31\cdots 75}a^{3}+\frac{73\cdots 39}{31\cdots 75}a^{2}-\frac{11\cdots 83}{31\cdots 75}a-\frac{17\cdots 24}{31\cdots 75}$, $\frac{30\cdots 87}{31\cdots 75}a^{21}-\frac{24\cdots 02}{31\cdots 75}a^{20}+\frac{98\cdots 21}{31\cdots 75}a^{19}+\frac{50\cdots 14}{31\cdots 75}a^{18}-\frac{13\cdots 63}{31\cdots 75}a^{17}-\frac{25\cdots 44}{63\cdots 35}a^{16}+\frac{12\cdots 46}{31\cdots 75}a^{15}-\frac{18\cdots 12}{31\cdots 75}a^{14}-\frac{31\cdots 28}{12\cdots 87}a^{13}+\frac{13\cdots 51}{63\cdots 35}a^{12}-\frac{13\cdots 63}{31\cdots 75}a^{11}+\frac{17\cdots 69}{31\cdots 75}a^{10}+\frac{10\cdots 49}{31\cdots 75}a^{9}-\frac{89\cdots 03}{31\cdots 75}a^{8}+\frac{10\cdots 66}{31\cdots 75}a^{7}+\frac{61\cdots 38}{31\cdots 75}a^{6}-\frac{21\cdots 42}{31\cdots 75}a^{5}+\frac{68\cdots 98}{31\cdots 75}a^{4}+\frac{12\cdots 62}{31\cdots 75}a^{3}-\frac{85\cdots 12}{31\cdots 75}a^{2}-\frac{30\cdots 08}{63\cdots 35}a+\frac{21\cdots 46}{31\cdots 75}$, $\frac{94\cdots 52}{31\cdots 75}a^{21}-\frac{76\cdots 67}{31\cdots 75}a^{20}-\frac{22\cdots 09}{31\cdots 75}a^{19}+\frac{16\cdots 69}{31\cdots 75}a^{18}-\frac{43\cdots 98}{31\cdots 75}a^{17}-\frac{98\cdots 69}{63\cdots 35}a^{16}+\frac{40\cdots 66}{31\cdots 75}a^{15}-\frac{54\cdots 02}{31\cdots 75}a^{14}-\frac{18\cdots 92}{12\cdots 87}a^{13}+\frac{47\cdots 81}{63\cdots 35}a^{12}-\frac{42\cdots 98}{31\cdots 75}a^{11}+\frac{45\cdots 74}{31\cdots 75}a^{10}+\frac{57\cdots 79}{31\cdots 75}a^{9}-\frac{31\cdots 63}{31\cdots 75}a^{8}+\frac{32\cdots 61}{31\cdots 75}a^{7}+\frac{32\cdots 98}{31\cdots 75}a^{6}-\frac{84\cdots 07}{31\cdots 75}a^{5}+\frac{16\cdots 83}{31\cdots 75}a^{4}+\frac{61\cdots 27}{31\cdots 75}a^{3}-\frac{31\cdots 77}{31\cdots 75}a^{2}-\frac{23\cdots 98}{63\cdots 35}a+\frac{78\cdots 16}{31\cdots 75}$, $\frac{24\cdots 14}{31\cdots 75}a^{21}-\frac{17\cdots 06}{31\cdots 75}a^{20}-\frac{43\cdots 82}{63\cdots 35}a^{19}+\frac{40\cdots 18}{31\cdots 75}a^{18}-\frac{13\cdots 46}{63\cdots 35}a^{17}-\frac{44\cdots 93}{63\cdots 35}a^{16}+\frac{81\cdots 82}{31\cdots 75}a^{15}-\frac{74\cdots 94}{63\cdots 35}a^{14}-\frac{79\cdots 20}{12\cdots 87}a^{13}+\frac{81\cdots 87}{63\cdots 35}a^{12}-\frac{54\cdots 91}{31\cdots 75}a^{11}+\frac{34\cdots 21}{31\cdots 75}a^{10}+\frac{43\cdots 48}{63\cdots 35}a^{9}-\frac{58\cdots 91}{31\cdots 75}a^{8}+\frac{11\cdots 46}{63\cdots 35}a^{7}+\frac{11\cdots 76}{31\cdots 75}a^{6}-\frac{89\cdots 82}{31\cdots 75}a^{5}-\frac{10\cdots 93}{31\cdots 75}a^{4}+\frac{80\cdots 68}{31\cdots 75}a^{3}+\frac{43\cdots 82}{31\cdots 75}a^{2}-\frac{14\cdots 01}{31\cdots 75}a-\frac{10\cdots 08}{63\cdots 35}$, $\frac{20\cdots 53}{31\cdots 75}a^{21}-\frac{75\cdots 57}{31\cdots 75}a^{20}+\frac{86\cdots 67}{63\cdots 35}a^{19}+\frac{66\cdots 36}{31\cdots 75}a^{18}-\frac{42\cdots 29}{12\cdots 87}a^{17}+\frac{38\cdots 99}{63\cdots 35}a^{16}+\frac{51\cdots 89}{31\cdots 75}a^{15}-\frac{90\cdots 95}{12\cdots 87}a^{14}+\frac{71\cdots 39}{12\cdots 87}a^{13}+\frac{86\cdots 49}{63\cdots 35}a^{12}-\frac{12\cdots 82}{31\cdots 75}a^{11}+\frac{19\cdots 22}{31\cdots 75}a^{10}-\frac{63\cdots 35}{12\cdots 87}a^{9}-\frac{49\cdots 32}{31\cdots 75}a^{8}+\frac{33\cdots 58}{63\cdots 35}a^{7}-\frac{83\cdots 98}{31\cdots 75}a^{6}-\frac{25\cdots 19}{31\cdots 75}a^{5}+\frac{32\cdots 99}{31\cdots 75}a^{4}+\frac{12\cdots 76}{31\cdots 75}a^{3}-\frac{24\cdots 26}{31\cdots 75}a^{2}-\frac{11\cdots 12}{31\cdots 75}a+\frac{20\cdots 66}{12\cdots 87}$
|
| |
| Regulator: | \( 62984644695.5 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{4}\cdot 62984644695.5 \cdot 1}{2\cdot\sqrt{22661033510180079603495293971842498241}}\cr\approx \mathstrut & 0.168929012895 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}.D_{11}$ (as 22T30):
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for $C_2^{10}.D_{11}$ |
| Character table for $C_2^{10}.D_{11}$ |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 siblings: | data not computed |
| Degree 44 siblings: | data not computed |
| Minimal sibling: | 22.14.17471883970840462300304775614373553.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.11.0.1}{11} }^{2}$ | ${\href{/padicField/3.11.0.1}{11} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{3}{,}\,{\href{/padicField/5.2.0.1}{2} }^{5}$ | ${\href{/padicField/7.11.0.1}{11} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }^{5}$ | ${\href{/padicField/13.11.0.1}{11} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{3}{,}\,{\href{/padicField/17.2.0.1}{2} }^{5}$ | ${\href{/padicField/19.11.0.1}{11} }^{2}$ | ${\href{/padicField/23.11.0.1}{11} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{6}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{9}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{6}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{5}$ | ${\href{/padicField/47.11.0.1}{11} }^{2}$ | ${\href{/padicField/53.11.0.1}{11} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{3}{,}\,{\href{/padicField/59.2.0.1}{2} }^{5}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(1297\)
| $\Q_{1297}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{1297}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $4$ | $4$ | $1$ | $3$ | ||||
| Deg $4$ | $4$ | $1$ | $3$ |