Normalized defining polynomial
\( x^{22} - 7 x^{21} - 9 x^{20} + 171 x^{19} - 276 x^{18} - 1022 x^{17} + 3668 x^{16} - 1134 x^{15} - 10988 x^{14} + 19765 x^{13} - 17789 x^{12} + 6 x^{11} + 111532 x^{10} - 268518 x^{9} - 21573 x^{8} + 707388 x^{7} - 501170 x^{6} - 789327 x^{5} + 795886 x^{4} + 400629 x^{3} - 428800 x^{2} - 69431 x + 68279 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22661033510180079603495293971842498241=1297^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{25} a^{20} + \frac{6}{25} a^{19} - \frac{1}{5} a^{18} + \frac{12}{25} a^{17} - \frac{2}{5} a^{15} - \frac{12}{25} a^{14} - \frac{2}{5} a^{11} + \frac{6}{25} a^{10} - \frac{1}{25} a^{9} + \frac{6}{25} a^{7} + \frac{1}{5} a^{6} + \frac{9}{25} a^{5} + \frac{2}{25} a^{4} + \frac{8}{25} a^{3} - \frac{8}{25} a^{2} + \frac{8}{25} a - \frac{4}{25}$, $\frac{1}{31636233176517573373035753202624464061589957410526651562175} a^{21} - \frac{178401205935046407310403719052934449789653422623149881941}{31636233176517573373035753202624464061589957410526651562175} a^{20} + \frac{3893279189323269358327474562743316941754400331929045378063}{31636233176517573373035753202624464061589957410526651562175} a^{19} + \frac{11666779468693539337886283473747553722772307941216997627647}{31636233176517573373035753202624464061589957410526651562175} a^{18} - \frac{8395903791859328492535693908844694964839328059118596717314}{31636233176517573373035753202624464061589957410526651562175} a^{17} + \frac{2733691561785741519337854126132594690167833483312703141993}{6327246635303514674607150640524892812317991482105330312435} a^{16} - \frac{12107364453362693604076845908668587665730104279644139811917}{31636233176517573373035753202624464061589957410526651562175} a^{15} + \frac{12172942745815345684402413678821227673234570274335327950414}{31636233176517573373035753202624464061589957410526651562175} a^{14} - \frac{124711103835382669371805933102124104030484380844832958349}{1265449327060702934921430128104978562463598296421066062487} a^{13} - \frac{898252907016477166512945805895871501198812984583598903712}{6327246635303514674607150640524892812317991482105330312435} a^{12} - \frac{8567024551979010055206101439655531773644237629715311938974}{31636233176517573373035753202624464061589957410526651562175} a^{11} - \frac{890612684206057093320043753789608119344901752591928357758}{31636233176517573373035753202624464061589957410526651562175} a^{10} + \frac{6234957531600746954417128036602696898014717863248672737947}{31636233176517573373035753202624464061589957410526651562175} a^{9} - \frac{218646656977503846063398141492676338778883528300193042619}{31636233176517573373035753202624464061589957410526651562175} a^{8} - \frac{7948284127158903014563710162356153965541873875598165549202}{31636233176517573373035753202624464061589957410526651562175} a^{7} + \frac{2347581731376180285579187839886980922356090056841272416599}{31636233176517573373035753202624464061589957410526651562175} a^{6} + \frac{5154032275729399270129725931570105446018074490254228361229}{31636233176517573373035753202624464061589957410526651562175} a^{5} + \frac{11629552994406685674728213240003506701053038102537537913064}{31636233176517573373035753202624464061589957410526651562175} a^{4} + \frac{5397452952956184040127349675888178522343714141601977913791}{31636233176517573373035753202624464061589957410526651562175} a^{3} - \frac{5675851891992435207444227348542230093866011171610923081991}{31636233176517573373035753202624464061589957410526651562175} a^{2} - \frac{2460887686832960867442571593801701757445941723622168153946}{6327246635303514674607150640524892812317991482105330312435} a - \frac{9931078424475302007667230420805656078755925369941587717862}{31636233176517573373035753202624464061589957410526651562175}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62984644695.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n30 are not computed |
| Character table for t22n30 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||