Label 22T30
Order \(22528\)
n \(22\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $22$
Transitive number $t$ :  $30$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,22,19,17,15,14,11,10,7,6,4)(2,21,20,18,16,13,12,9,8,5,3), (1,9)(2,10)(3,7)(4,8)(11,22,12,21)(13,20)(14,19)(15,17,16,18)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
22:  $D_{11}$

Resolvents shown for degrees $\leq 47$


Degree 2: None

Degree 11: $D_{11}$

Low degree siblings

22T29 x 31, 22T30 x 30, 44T147 x 31, 44T148 x 31, 44T204 x 155, 44T205 x 155, 44T206 x 155, 44T207 x 31, 44T208 x 155, 44T209 x 155, 44T210 x 155, 44T211 x 155

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 100 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $22528=2^{11} \cdot 11$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.