Normalized defining polynomial
\( x^{22} - 2 x^{21} - 21 x^{20} + 32 x^{19} + 193 x^{18} - 192 x^{17} - 983 x^{16} + 496 x^{15} + 2915 x^{14} + \cdots + 1 \)
Invariants
| Degree: | $22$ |
| |
| Signature: | $[14, 4]$ |
| |
| Discriminant: |
\(101482802839751113302452158783383633133568\)
\(\medspace = 2^{33}\cdot 1721\cdot 9473\cdot 146628265753\cdot 4942156467121\)
|
| |
| Root discriminant: | \(73.10\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(1721\), \(9473\), \(146628265753\), \(4942156467121\)
|
| |
| Discriminant root field: | $\Q(\sqrt{23628\!\cdots\!47458}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $17$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a^{21}-2a^{20}-21a^{19}+32a^{18}+193a^{17}-192a^{16}-983a^{15}+496a^{14}+2915a^{13}-344a^{12}-4994a^{11}-730a^{10}+4915a^{9}+1626a^{8}-2700a^{7}-1304a^{6}+754a^{5}+502a^{4}-77a^{3}-90a^{2}-5a+6$, $a^{21}-3a^{20}-18a^{19}+50a^{18}+143a^{17}-335a^{16}-648a^{15}+1144a^{14}+1771a^{13}-2115a^{12}-2879a^{11}+2149a^{10}+2766a^{9}-1140a^{8}-1560a^{7}+256a^{6}+498a^{5}+4a^{4}-81a^{3}-9a^{2}+4a+2$, $a^{21}-2a^{20}-21a^{19}+32a^{18}+193a^{17}-192a^{16}-983a^{15}+496a^{14}+2915a^{13}-344a^{12}-4994a^{11}-730a^{10}+4915a^{9}+1626a^{8}-2700a^{7}-1304a^{6}+754a^{5}+502a^{4}-77a^{3}-90a^{2}-4a+6$, $3a^{21}-7a^{20}-61a^{19}+117a^{18}+547a^{17}-769a^{16}-2757a^{15}+2471a^{14}+8249a^{13}-3947a^{12}-14638a^{11}+2804a^{10}+15474a^{9}-36a^{8}-9715a^{7}-1217a^{6}+3525a^{5}+752a^{4}-680a^{3}-183a^{2}+51a+17$, $a^{21}-3a^{20}-18a^{19}+50a^{18}+143a^{17}-335a^{16}-648a^{15}+1144a^{14}+1771a^{13}-2115a^{12}-2879a^{11}+2149a^{10}+2766a^{9}-1140a^{8}-1560a^{7}+256a^{6}+498a^{5}+4a^{4}-81a^{3}-9a^{2}+3a+2$, $14a^{21}-30a^{20}-289a^{19}+488a^{18}+2617a^{17}-3042a^{16}-13185a^{15}+8718a^{14}+38835a^{13}-10150a^{12}-66313a^{11}-576a^{10}+65276a^{9}+12205a^{8}-36139a^{7}-11239a^{6}+10477a^{5}+4246a^{4}-1350a^{3}-645a^{2}+41a+27$, $3a^{20}-7a^{19}-60a^{18}+115a^{17}+526a^{16}-737a^{15}-2564a^{14}+2278a^{13}+7268a^{12}-3435a^{11}-11749a^{10}+2354a^{9}+10607a^{8}-402a^{7}-5092a^{6}-262a^{5}+1162a^{4}+107a^{3}-108a^{2}-10a+3$, $4a^{21}-10a^{20}-79a^{19}+167a^{18}+690a^{17}-1104a^{16}-3405a^{15}+3615a^{14}+10020a^{13}-6062a^{12}-17517a^{11}+4953a^{10}+18240a^{9}-1176a^{8}-11275a^{7}-961a^{6}+4023a^{5}+756a^{4}-761a^{3}-191a^{2}+54a+16$, $9a^{21}-16a^{20}-191a^{19}+244a^{18}+1754a^{17}-1315a^{16}-8769a^{15}+2416a^{14}+24827a^{13}+2351a^{12}-38728a^{11}-13661a^{10}+31985a^{9}+17945a^{8}-12186a^{7}-10304a^{6}+834a^{5}+2498a^{4}+527a^{3}-151a^{2}-75a-9$, $5a^{21}-9a^{20}-108a^{19}+142a^{18}+1015a^{17}-817a^{16}-5251a^{15}+1836a^{14}+15731a^{13}-4a^{12}-27145a^{11}-6232a^{10}+26899a^{9}+10114a^{8}-14969a^{7}-7058a^{6}+4369a^{5}+2356a^{4}-569a^{3}-348a^{2}+18a+18$, $3a^{20}-7a^{19}-59a^{18}+112a^{17}+509a^{16}-690a^{15}-2437a^{14}+1986a^{13}+6736a^{12}-2528a^{11}-10469a^{10}+847a^{9}+8962a^{8}+1059a^{7}-4033a^{6}-1139a^{5}+843a^{4}+403a^{3}-57a^{2}-43a-4$, $16a^{21}-25a^{20}-347a^{19}+360a^{18}+3248a^{17}-1648a^{16}-16481a^{15}+702a^{14}+47145a^{13}+15244a^{12}-73900a^{11}-44426a^{10}+60444a^{9}+53297a^{8}-21129a^{7}-31038a^{6}-889a^{5}+8187a^{4}+2230a^{3}-616a^{2}-356a-44$, $11a^{21}-22a^{20}-231a^{19}+353a^{18}+2121a^{17}-2133a^{16}-10780a^{15}+5645a^{14}+31860a^{13}-4710a^{12}-54361a^{11}-5440a^{10}+53431a^{9}+13815a^{8}-29710a^{7}-10771a^{6}+8884a^{5}+3829a^{4}-1313a^{3}-600a^{2}+78a+33$, $11a^{21}-21a^{20}-230a^{19}+325a^{18}+2093a^{17}-1825a^{16}-10447a^{15}+3930a^{14}+29801a^{13}+415a^{12}-47461a^{11}-13498a^{10}+40964a^{9}+20070a^{8}-17467a^{7}-12459a^{6}+2510a^{5}+3352a^{4}+274a^{3}-291a^{2}-64a$, $32a^{21}-75a^{20}-648a^{19}+1250a^{18}+5784a^{17}-8182a^{16}-28990a^{15}+26108a^{14}+86051a^{13}-41101a^{12}-150702a^{11}+28006a^{10}+155726a^{9}+1349a^{8}-93894a^{7}-13385a^{6}+31734a^{5}+7561a^{4}-5473a^{3}-1647a^{2}+344a+130$, $16a^{21}-30a^{20}-337a^{19}+465a^{18}+3088a^{17}-2613a^{16}-15521a^{15}+5616a^{14}+44667a^{13}+685a^{12}-72204a^{11}-19565a^{10}+64194a^{9}+29113a^{8}-29408a^{7}-18280a^{6}+5615a^{5}+5111a^{4}-78a^{3}-518a^{2}-53a+11$, $a^{21}-12a^{20}-a^{19}+239a^{18}-122a^{17}-2058a^{16}+863a^{15}+9738a^{14}-1675a^{13}-26571a^{12}-2031a^{11}+41047a^{10}+10618a^{9}-35081a^{8}-13484a^{7}+15652a^{6}+7462a^{5}-3159a^{4}-1753a^{3}+224a^{2}+130a+4$
|
| |
| Regulator: | \( 5288131548180 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{4}\cdot 5288131548180 \cdot 1}{2\cdot\sqrt{101482802839751113302452158783383633133568}}\cr\approx \mathstrut & 0.211941225161792 \end{aligned}\] (assuming GRH)
Galois group
$S_{11}\wr C_2$ (as 22T57):
| A non-solvable group of order 3186701844480000 |
| The 1652 conjugacy class representatives for $S_{11}\wr C_2$ |
| Character table for $S_{11}\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 44 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ | ${\href{/padicField/5.14.0.1}{14} }{,}\,{\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.8.0.1}{8} }{,}\,{\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.14.0.1}{14} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ | $18{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.8.0.1}{8} }^{2}{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{3}$ | $16{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}$ | ${\href{/padicField/41.9.0.1}{9} }{,}\,{\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | $16{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }{,}\,{\href{/padicField/47.2.0.1}{2} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.11.2.33a1.189 | $x^{22} + 2 x^{13} + 6 x^{11} + x^{4} + 6 x^{2} + 7$ | $2$ | $11$ | $33$ | not computed | not computed |
|
\(1721\)
| $\Q_{1721}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{1721}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1721}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1721}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | ||
|
\(9473\)
| $\Q_{9473}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{9473}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | ||
| Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $$[\ ]^{9}$$ | ||
|
\(146628265753\)
| $\Q_{146628265753}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $11$ | $1$ | $11$ | $0$ | $C_{11}$ | $$[\ ]^{11}$$ | ||
|
\(4942156467121\)
| $\Q_{4942156467121}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{4942156467121}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{4942156467121}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{4942156467121}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $11$ | $1$ | $11$ | $0$ | $C_{11}$ | $$[\ ]^{11}$$ |