Properties

Label 22T57
Order \(3186701844480000\)
n \(22\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $22$
Transitive number $t$ :  $57$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12,10,15,4,16,3,22,9,13,8,21)(2,19,6,14,7,18)(5,17,11,20), (1,19,11,22,9,18)(2,15,4,21,3,16,8,13,10,20,7,17,5,14,6,12)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 11: None

Low degree siblings

44T1966, 44T1967, 44T1968

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 1,652 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $3186701844480000=2^{17} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.