Properties

Label 21.7.467...416.1
Degree $21$
Signature $[7, 7]$
Discriminant $-4.680\times 10^{35}$
Root discriminant \(49.96\)
Ramified primes $2,11,73$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{21}:C_6$ (as 21T11)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 + 16*x^19 - 6*x^18 + 60*x^17 + 24*x^16 - 262*x^15 + 630*x^14 - 2088*x^13 + 2404*x^12 - 2916*x^11 - 68*x^10 + 6420*x^9 - 11568*x^8 + 16832*x^7 - 14508*x^6 + 9552*x^5 - 4776*x^4 + 204*x^3 + 360*x^2 - 600*x + 500)
 
gp: K = bnfinit(y^21 + 16*y^19 - 6*y^18 + 60*y^17 + 24*y^16 - 262*y^15 + 630*y^14 - 2088*y^13 + 2404*y^12 - 2916*y^11 - 68*y^10 + 6420*y^9 - 11568*y^8 + 16832*y^7 - 14508*y^6 + 9552*y^5 - 4776*y^4 + 204*y^3 + 360*y^2 - 600*y + 500, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 + 16*x^19 - 6*x^18 + 60*x^17 + 24*x^16 - 262*x^15 + 630*x^14 - 2088*x^13 + 2404*x^12 - 2916*x^11 - 68*x^10 + 6420*x^9 - 11568*x^8 + 16832*x^7 - 14508*x^6 + 9552*x^5 - 4776*x^4 + 204*x^3 + 360*x^2 - 600*x + 500);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 + 16*x^19 - 6*x^18 + 60*x^17 + 24*x^16 - 262*x^15 + 630*x^14 - 2088*x^13 + 2404*x^12 - 2916*x^11 - 68*x^10 + 6420*x^9 - 11568*x^8 + 16832*x^7 - 14508*x^6 + 9552*x^5 - 4776*x^4 + 204*x^3 + 360*x^2 - 600*x + 500)
 

\( x^{21} + 16 x^{19} - 6 x^{18} + 60 x^{17} + 24 x^{16} - 262 x^{15} + 630 x^{14} - 2088 x^{13} + \cdots + 500 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[7, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-467975407174598390024135662204092416\) \(\medspace = -\,2^{20}\cdot 11^{7}\cdot 73^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(49.96\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{20/21}11^{1/2}73^{2/3}\approx 112.10031078443632$
Ramified primes:   \(2\), \(11\), \(73\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-11}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{2}a^{12}$, $\frac{1}{2}a^{13}$, $\frac{1}{2}a^{14}$, $\frac{1}{2}a^{15}$, $\frac{1}{2}a^{16}$, $\frac{1}{2}a^{17}$, $\frac{1}{2}a^{18}$, $\frac{1}{10}a^{19}+\frac{1}{10}a^{17}-\frac{1}{10}a^{16}-\frac{1}{10}a^{14}-\frac{1}{5}a^{13}+\frac{1}{5}a^{11}+\frac{2}{5}a^{10}+\frac{2}{5}a^{9}+\frac{1}{5}a^{8}+\frac{1}{5}a^{6}+\frac{1}{5}a^{5}+\frac{1}{5}a^{4}+\frac{1}{5}a^{3}+\frac{2}{5}a^{2}+\frac{2}{5}a$, $\frac{1}{32\!\cdots\!50}a^{20}-\frac{44\!\cdots\!81}{65\!\cdots\!90}a^{19}+\frac{27\!\cdots\!33}{16\!\cdots\!25}a^{18}+\frac{11\!\cdots\!57}{16\!\cdots\!25}a^{17}+\frac{76\!\cdots\!63}{65\!\cdots\!90}a^{16}+\frac{88\!\cdots\!49}{32\!\cdots\!50}a^{15}-\frac{24\!\cdots\!91}{16\!\cdots\!25}a^{14}+\frac{45\!\cdots\!44}{32\!\cdots\!45}a^{13}-\frac{88\!\cdots\!63}{32\!\cdots\!50}a^{12}+\frac{29\!\cdots\!22}{16\!\cdots\!25}a^{11}+\frac{36\!\cdots\!32}{16\!\cdots\!25}a^{10}-\frac{57\!\cdots\!44}{16\!\cdots\!25}a^{9}-\frac{87\!\cdots\!84}{32\!\cdots\!45}a^{8}-\frac{64\!\cdots\!34}{16\!\cdots\!25}a^{7}-\frac{34\!\cdots\!89}{16\!\cdots\!25}a^{6}+\frac{58\!\cdots\!16}{16\!\cdots\!25}a^{5}+\frac{69\!\cdots\!96}{16\!\cdots\!25}a^{4}+\frac{79\!\cdots\!82}{16\!\cdots\!25}a^{3}+\frac{36\!\cdots\!92}{16\!\cdots\!25}a^{2}+\frac{88\!\cdots\!19}{32\!\cdots\!45}a+\frac{31\!\cdots\!88}{65\!\cdots\!69}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{35\!\cdots\!79}{32\!\cdots\!50}a^{20}+\frac{77\!\cdots\!27}{65\!\cdots\!69}a^{19}+\frac{27\!\cdots\!07}{16\!\cdots\!25}a^{18}+\frac{19\!\cdots\!88}{16\!\cdots\!25}a^{17}+\frac{16\!\cdots\!04}{32\!\cdots\!45}a^{16}+\frac{15\!\cdots\!48}{16\!\cdots\!25}a^{15}-\frac{88\!\cdots\!23}{32\!\cdots\!50}a^{14}+\frac{10\!\cdots\!17}{32\!\cdots\!45}a^{13}-\frac{23\!\cdots\!76}{16\!\cdots\!25}a^{12}+\frac{20\!\cdots\!58}{16\!\cdots\!25}a^{11}+\frac{22\!\cdots\!93}{16\!\cdots\!25}a^{10}-\frac{55\!\cdots\!36}{16\!\cdots\!25}a^{9}+\frac{21\!\cdots\!98}{32\!\cdots\!45}a^{8}-\frac{57\!\cdots\!61}{16\!\cdots\!25}a^{7}+\frac{37\!\cdots\!64}{16\!\cdots\!25}a^{6}+\frac{83\!\cdots\!34}{16\!\cdots\!25}a^{5}-\frac{11\!\cdots\!96}{16\!\cdots\!25}a^{4}+\frac{53\!\cdots\!98}{16\!\cdots\!25}a^{3}-\frac{45\!\cdots\!42}{16\!\cdots\!25}a^{2}-\frac{16\!\cdots\!06}{32\!\cdots\!45}a+\frac{45\!\cdots\!71}{65\!\cdots\!69}$, $\frac{59\!\cdots\!05}{65\!\cdots\!69}a^{20}+\frac{10\!\cdots\!95}{65\!\cdots\!69}a^{19}+\frac{20\!\cdots\!45}{13\!\cdots\!38}a^{18}+\frac{30\!\cdots\!97}{13\!\cdots\!38}a^{17}+\frac{44\!\cdots\!80}{65\!\cdots\!69}a^{16}+\frac{19\!\cdots\!69}{13\!\cdots\!38}a^{15}-\frac{57\!\cdots\!06}{65\!\cdots\!69}a^{14}+\frac{18\!\cdots\!27}{65\!\cdots\!69}a^{13}-\frac{12\!\cdots\!69}{13\!\cdots\!38}a^{12}-\frac{52\!\cdots\!49}{65\!\cdots\!69}a^{11}-\frac{55\!\cdots\!52}{65\!\cdots\!69}a^{10}-\frac{28\!\cdots\!29}{65\!\cdots\!69}a^{9}+\frac{11\!\cdots\!03}{65\!\cdots\!69}a^{8}-\frac{12\!\cdots\!18}{65\!\cdots\!69}a^{7}+\frac{36\!\cdots\!91}{65\!\cdots\!69}a^{6}+\frac{40\!\cdots\!16}{65\!\cdots\!69}a^{5}+\frac{69\!\cdots\!64}{65\!\cdots\!69}a^{4}+\frac{16\!\cdots\!97}{65\!\cdots\!69}a^{3}+\frac{25\!\cdots\!30}{65\!\cdots\!69}a^{2}+\frac{41\!\cdots\!50}{65\!\cdots\!69}a-\frac{20\!\cdots\!73}{65\!\cdots\!69}$, $\frac{77\!\cdots\!27}{65\!\cdots\!69}a^{20}-\frac{22\!\cdots\!25}{65\!\cdots\!69}a^{19}+\frac{12\!\cdots\!65}{65\!\cdots\!69}a^{18}-\frac{82\!\cdots\!74}{65\!\cdots\!69}a^{17}+\frac{43\!\cdots\!88}{65\!\cdots\!69}a^{16}+\frac{14\!\cdots\!55}{13\!\cdots\!38}a^{15}-\frac{22\!\cdots\!32}{65\!\cdots\!69}a^{14}+\frac{54\!\cdots\!68}{65\!\cdots\!69}a^{13}-\frac{16\!\cdots\!12}{65\!\cdots\!69}a^{12}+\frac{21\!\cdots\!11}{65\!\cdots\!69}a^{11}-\frac{21\!\cdots\!98}{65\!\cdots\!69}a^{10}-\frac{14\!\cdots\!44}{65\!\cdots\!69}a^{9}+\frac{58\!\cdots\!71}{65\!\cdots\!69}a^{8}-\frac{10\!\cdots\!52}{65\!\cdots\!69}a^{7}+\frac{13\!\cdots\!60}{65\!\cdots\!69}a^{6}-\frac{11\!\cdots\!84}{65\!\cdots\!69}a^{5}+\frac{54\!\cdots\!42}{65\!\cdots\!69}a^{4}-\frac{19\!\cdots\!24}{65\!\cdots\!69}a^{3}-\frac{57\!\cdots\!10}{65\!\cdots\!69}a^{2}+\frac{21\!\cdots\!50}{65\!\cdots\!69}a+\frac{30\!\cdots\!79}{65\!\cdots\!69}$, $\frac{53\!\cdots\!51}{65\!\cdots\!69}a^{20}-\frac{65\!\cdots\!49}{65\!\cdots\!69}a^{19}+\frac{84\!\cdots\!98}{65\!\cdots\!69}a^{18}-\frac{41\!\cdots\!94}{65\!\cdots\!69}a^{17}+\frac{30\!\cdots\!15}{65\!\cdots\!69}a^{16}+\frac{22\!\cdots\!21}{13\!\cdots\!38}a^{15}-\frac{14\!\cdots\!06}{65\!\cdots\!69}a^{14}+\frac{35\!\cdots\!21}{65\!\cdots\!69}a^{13}-\frac{22\!\cdots\!85}{13\!\cdots\!38}a^{12}+\frac{13\!\cdots\!75}{65\!\cdots\!69}a^{11}-\frac{14\!\cdots\!84}{65\!\cdots\!69}a^{10}-\frac{28\!\cdots\!01}{65\!\cdots\!69}a^{9}+\frac{38\!\cdots\!71}{65\!\cdots\!69}a^{8}-\frac{65\!\cdots\!50}{65\!\cdots\!69}a^{7}+\frac{86\!\cdots\!73}{65\!\cdots\!69}a^{6}-\frac{66\!\cdots\!64}{65\!\cdots\!69}a^{5}+\frac{35\!\cdots\!22}{65\!\cdots\!69}a^{4}-\frac{10\!\cdots\!30}{65\!\cdots\!69}a^{3}-\frac{33\!\cdots\!00}{65\!\cdots\!69}a^{2}+\frac{13\!\cdots\!50}{65\!\cdots\!69}a-\frac{32\!\cdots\!51}{65\!\cdots\!69}$, $\frac{65\!\cdots\!61}{65\!\cdots\!69}a^{20}+\frac{15\!\cdots\!41}{65\!\cdots\!69}a^{19}+\frac{10\!\cdots\!43}{65\!\cdots\!69}a^{18}-\frac{11\!\cdots\!97}{65\!\cdots\!69}a^{17}+\frac{39\!\cdots\!75}{65\!\cdots\!69}a^{16}+\frac{60\!\cdots\!59}{13\!\cdots\!38}a^{15}-\frac{16\!\cdots\!18}{65\!\cdots\!69}a^{14}+\frac{39\!\cdots\!75}{65\!\cdots\!69}a^{13}-\frac{24\!\cdots\!23}{13\!\cdots\!38}a^{12}+\frac{12\!\cdots\!77}{65\!\cdots\!69}a^{11}-\frac{15\!\cdots\!88}{65\!\cdots\!69}a^{10}-\frac{85\!\cdots\!59}{65\!\cdots\!69}a^{9}+\frac{40\!\cdots\!77}{65\!\cdots\!69}a^{8}-\frac{68\!\cdots\!86}{65\!\cdots\!69}a^{7}+\frac{86\!\cdots\!55}{65\!\cdots\!69}a^{6}-\frac{58\!\cdots\!32}{65\!\cdots\!69}a^{5}+\frac{36\!\cdots\!50}{65\!\cdots\!69}a^{4}-\frac{74\!\cdots\!36}{65\!\cdots\!69}a^{3}-\frac{28\!\cdots\!40}{65\!\cdots\!69}a^{2}+\frac{14\!\cdots\!50}{65\!\cdots\!69}a-\frac{31\!\cdots\!59}{65\!\cdots\!69}$, $\frac{50\!\cdots\!42}{65\!\cdots\!69}a^{20}+\frac{21\!\cdots\!28}{65\!\cdots\!69}a^{19}+\frac{81\!\cdots\!67}{65\!\cdots\!69}a^{18}+\frac{71\!\cdots\!49}{65\!\cdots\!69}a^{17}+\frac{30\!\cdots\!73}{65\!\cdots\!69}a^{16}+\frac{59\!\cdots\!07}{13\!\cdots\!38}a^{15}-\frac{11\!\cdots\!24}{65\!\cdots\!69}a^{14}+\frac{28\!\cdots\!89}{65\!\cdots\!69}a^{13}-\frac{18\!\cdots\!09}{13\!\cdots\!38}a^{12}+\frac{76\!\cdots\!75}{65\!\cdots\!69}a^{11}-\frac{10\!\cdots\!86}{65\!\cdots\!69}a^{10}-\frac{86\!\cdots\!64}{65\!\cdots\!69}a^{9}+\frac{29\!\cdots\!81}{65\!\cdots\!69}a^{8}-\frac{47\!\cdots\!42}{65\!\cdots\!69}a^{7}+\frac{59\!\cdots\!87}{65\!\cdots\!69}a^{6}-\frac{34\!\cdots\!38}{65\!\cdots\!69}a^{5}+\frac{25\!\cdots\!66}{65\!\cdots\!69}a^{4}-\frac{31\!\cdots\!58}{65\!\cdots\!69}a^{3}-\frac{16\!\cdots\!70}{65\!\cdots\!69}a^{2}+\frac{99\!\cdots\!50}{65\!\cdots\!69}a-\frac{59\!\cdots\!93}{65\!\cdots\!69}$, $\frac{86\!\cdots\!18}{65\!\cdots\!69}a^{20}+\frac{17\!\cdots\!09}{65\!\cdots\!69}a^{19}+\frac{13\!\cdots\!80}{65\!\cdots\!69}a^{18}-\frac{38\!\cdots\!99}{13\!\cdots\!38}a^{17}+\frac{51\!\cdots\!66}{65\!\cdots\!69}a^{16}+\frac{76\!\cdots\!45}{13\!\cdots\!38}a^{15}-\frac{21\!\cdots\!62}{65\!\cdots\!69}a^{14}+\frac{52\!\cdots\!01}{65\!\cdots\!69}a^{13}-\frac{16\!\cdots\!08}{65\!\cdots\!69}a^{12}+\frac{16\!\cdots\!37}{65\!\cdots\!69}a^{11}-\frac{20\!\cdots\!66}{65\!\cdots\!69}a^{10}-\frac{10\!\cdots\!21}{65\!\cdots\!69}a^{9}+\frac{54\!\cdots\!21}{65\!\cdots\!69}a^{8}-\frac{91\!\cdots\!14}{65\!\cdots\!69}a^{7}+\frac{11\!\cdots\!29}{65\!\cdots\!69}a^{6}-\frac{79\!\cdots\!54}{65\!\cdots\!69}a^{5}+\frac{49\!\cdots\!86}{65\!\cdots\!69}a^{4}-\frac{10\!\cdots\!19}{65\!\cdots\!69}a^{3}-\frac{39\!\cdots\!10}{65\!\cdots\!69}a^{2}+\frac{19\!\cdots\!50}{65\!\cdots\!69}a-\frac{60\!\cdots\!19}{65\!\cdots\!69}$, $\frac{29\!\cdots\!09}{32\!\cdots\!50}a^{20}+\frac{41\!\cdots\!69}{32\!\cdots\!45}a^{19}+\frac{49\!\cdots\!69}{32\!\cdots\!50}a^{18}+\frac{23\!\cdots\!93}{16\!\cdots\!25}a^{17}+\frac{35\!\cdots\!87}{65\!\cdots\!69}a^{16}+\frac{28\!\cdots\!91}{32\!\cdots\!50}a^{15}-\frac{29\!\cdots\!49}{16\!\cdots\!25}a^{14}+\frac{77\!\cdots\!44}{32\!\cdots\!45}a^{13}-\frac{40\!\cdots\!17}{32\!\cdots\!50}a^{12}+\frac{83\!\cdots\!83}{16\!\cdots\!25}a^{11}-\frac{11\!\cdots\!17}{16\!\cdots\!25}a^{10}-\frac{32\!\cdots\!76}{16\!\cdots\!25}a^{9}+\frac{12\!\cdots\!01}{32\!\cdots\!45}a^{8}-\frac{44\!\cdots\!31}{16\!\cdots\!25}a^{7}+\frac{71\!\cdots\!84}{16\!\cdots\!25}a^{6}-\frac{96\!\cdots\!21}{16\!\cdots\!25}a^{5}+\frac{78\!\cdots\!24}{16\!\cdots\!25}a^{4}-\frac{55\!\cdots\!52}{16\!\cdots\!25}a^{3}-\frac{15\!\cdots\!02}{16\!\cdots\!25}a^{2}-\frac{49\!\cdots\!64}{65\!\cdots\!69}a-\frac{17\!\cdots\!93}{65\!\cdots\!69}$, $\frac{94\!\cdots\!26}{16\!\cdots\!25}a^{20}+\frac{47\!\cdots\!23}{65\!\cdots\!90}a^{19}+\frac{16\!\cdots\!41}{16\!\cdots\!25}a^{18}+\frac{14\!\cdots\!14}{16\!\cdots\!25}a^{17}+\frac{15\!\cdots\!28}{32\!\cdots\!45}a^{16}+\frac{21\!\cdots\!73}{32\!\cdots\!50}a^{15}-\frac{23\!\cdots\!39}{32\!\cdots\!50}a^{14}+\frac{16\!\cdots\!31}{65\!\cdots\!90}a^{13}-\frac{30\!\cdots\!01}{32\!\cdots\!50}a^{12}+\frac{45\!\cdots\!44}{16\!\cdots\!25}a^{11}-\frac{23\!\cdots\!11}{16\!\cdots\!25}a^{10}-\frac{21\!\cdots\!38}{16\!\cdots\!25}a^{9}+\frac{65\!\cdots\!47}{32\!\cdots\!45}a^{8}-\frac{61\!\cdots\!18}{16\!\cdots\!25}a^{7}+\frac{93\!\cdots\!47}{16\!\cdots\!25}a^{6}-\frac{42\!\cdots\!93}{16\!\cdots\!25}a^{5}+\frac{58\!\cdots\!42}{16\!\cdots\!25}a^{4}-\frac{75\!\cdots\!61}{16\!\cdots\!25}a^{3}+\frac{90\!\cdots\!34}{16\!\cdots\!25}a^{2}-\frac{52\!\cdots\!22}{32\!\cdots\!45}a-\frac{10\!\cdots\!03}{65\!\cdots\!69}$, $\frac{59\!\cdots\!37}{32\!\cdots\!50}a^{20}+\frac{42\!\cdots\!92}{32\!\cdots\!45}a^{19}+\frac{12\!\cdots\!67}{32\!\cdots\!50}a^{18}+\frac{31\!\cdots\!49}{16\!\cdots\!25}a^{17}+\frac{12\!\cdots\!42}{65\!\cdots\!69}a^{16}+\frac{23\!\cdots\!63}{32\!\cdots\!50}a^{15}+\frac{12\!\cdots\!11}{32\!\cdots\!50}a^{14}-\frac{13\!\cdots\!41}{65\!\cdots\!90}a^{13}+\frac{20\!\cdots\!22}{16\!\cdots\!25}a^{12}-\frac{49\!\cdots\!87}{32\!\cdots\!50}a^{11}+\frac{73\!\cdots\!19}{16\!\cdots\!25}a^{10}-\frac{19\!\cdots\!68}{16\!\cdots\!25}a^{9}-\frac{42\!\cdots\!22}{32\!\cdots\!45}a^{8}+\frac{78\!\cdots\!92}{16\!\cdots\!25}a^{7}-\frac{65\!\cdots\!38}{16\!\cdots\!25}a^{6}+\frac{98\!\cdots\!22}{16\!\cdots\!25}a^{5}-\frac{35\!\cdots\!18}{16\!\cdots\!25}a^{4}+\frac{14\!\cdots\!64}{16\!\cdots\!25}a^{3}-\frac{14\!\cdots\!86}{16\!\cdots\!25}a^{2}-\frac{25\!\cdots\!60}{65\!\cdots\!69}a-\frac{18\!\cdots\!69}{65\!\cdots\!69}$, $\frac{28\!\cdots\!81}{32\!\cdots\!50}a^{20}+\frac{93\!\cdots\!03}{65\!\cdots\!90}a^{19}+\frac{44\!\cdots\!21}{32\!\cdots\!50}a^{18}-\frac{47\!\cdots\!73}{16\!\cdots\!25}a^{17}+\frac{15\!\cdots\!82}{32\!\cdots\!45}a^{16}+\frac{10\!\cdots\!19}{32\!\cdots\!50}a^{15}-\frac{39\!\cdots\!06}{16\!\cdots\!25}a^{14}+\frac{33\!\cdots\!31}{65\!\cdots\!69}a^{13}-\frac{53\!\cdots\!03}{32\!\cdots\!50}a^{12}+\frac{52\!\cdots\!79}{32\!\cdots\!50}a^{11}-\frac{27\!\cdots\!18}{16\!\cdots\!25}a^{10}-\frac{18\!\cdots\!49}{16\!\cdots\!25}a^{9}+\frac{38\!\cdots\!28}{65\!\cdots\!69}a^{8}-\frac{14\!\cdots\!54}{16\!\cdots\!25}a^{7}+\frac{17\!\cdots\!86}{16\!\cdots\!25}a^{6}-\frac{11\!\cdots\!09}{16\!\cdots\!25}a^{5}+\frac{63\!\cdots\!71}{16\!\cdots\!25}a^{4}-\frac{11\!\cdots\!88}{16\!\cdots\!25}a^{3}-\frac{38\!\cdots\!33}{16\!\cdots\!25}a^{2}+\frac{90\!\cdots\!12}{32\!\cdots\!45}a-\frac{28\!\cdots\!63}{65\!\cdots\!69}$, $\frac{74\!\cdots\!37}{16\!\cdots\!25}a^{20}+\frac{75\!\cdots\!34}{32\!\cdots\!45}a^{19}+\frac{12\!\cdots\!92}{16\!\cdots\!25}a^{18}+\frac{51\!\cdots\!98}{16\!\cdots\!25}a^{17}+\frac{10\!\cdots\!25}{65\!\cdots\!69}a^{16}+\frac{35\!\cdots\!51}{32\!\cdots\!50}a^{15}-\frac{90\!\cdots\!64}{16\!\cdots\!25}a^{14}-\frac{27\!\cdots\!57}{65\!\cdots\!90}a^{13}+\frac{10\!\cdots\!13}{32\!\cdots\!50}a^{12}-\frac{94\!\cdots\!49}{32\!\cdots\!50}a^{11}+\frac{43\!\cdots\!38}{16\!\cdots\!25}a^{10}-\frac{38\!\cdots\!61}{16\!\cdots\!25}a^{9}-\frac{17\!\cdots\!79}{32\!\cdots\!45}a^{8}+\frac{18\!\cdots\!84}{16\!\cdots\!25}a^{7}-\frac{21\!\cdots\!51}{16\!\cdots\!25}a^{6}+\frac{22\!\cdots\!19}{16\!\cdots\!25}a^{5}-\frac{15\!\cdots\!36}{16\!\cdots\!25}a^{4}+\frac{48\!\cdots\!28}{16\!\cdots\!25}a^{3}-\frac{14\!\cdots\!72}{16\!\cdots\!25}a^{2}-\frac{20\!\cdots\!60}{65\!\cdots\!69}a+\frac{76\!\cdots\!31}{65\!\cdots\!69}$, $\frac{13\!\cdots\!07}{32\!\cdots\!50}a^{20}+\frac{11\!\cdots\!26}{32\!\cdots\!45}a^{19}+\frac{11\!\cdots\!81}{16\!\cdots\!25}a^{18}+\frac{10\!\cdots\!43}{32\!\cdots\!50}a^{17}+\frac{16\!\cdots\!27}{65\!\cdots\!90}a^{16}+\frac{10\!\cdots\!43}{32\!\cdots\!50}a^{15}-\frac{27\!\cdots\!19}{32\!\cdots\!50}a^{14}+\frac{58\!\cdots\!04}{32\!\cdots\!45}a^{13}-\frac{21\!\cdots\!91}{32\!\cdots\!50}a^{12}+\frac{11\!\cdots\!23}{32\!\cdots\!50}a^{11}-\frac{11\!\cdots\!86}{16\!\cdots\!25}a^{10}-\frac{12\!\cdots\!68}{16\!\cdots\!25}a^{9}+\frac{67\!\cdots\!96}{32\!\cdots\!45}a^{8}-\frac{45\!\cdots\!63}{16\!\cdots\!25}a^{7}+\frac{62\!\cdots\!22}{16\!\cdots\!25}a^{6}-\frac{31\!\cdots\!68}{16\!\cdots\!25}a^{5}+\frac{24\!\cdots\!17}{16\!\cdots\!25}a^{4}-\frac{43\!\cdots\!06}{16\!\cdots\!25}a^{3}-\frac{32\!\cdots\!41}{16\!\cdots\!25}a^{2}+\frac{72\!\cdots\!21}{32\!\cdots\!45}a-\frac{11\!\cdots\!59}{65\!\cdots\!69}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 11785083997.5 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{7}\cdot 11785083997.5 \cdot 1}{2\cdot\sqrt{467975407174598390024135662204092416}}\cr\approx \mathstrut & 0.426245904664 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 + 16*x^19 - 6*x^18 + 60*x^17 + 24*x^16 - 262*x^15 + 630*x^14 - 2088*x^13 + 2404*x^12 - 2916*x^11 - 68*x^10 + 6420*x^9 - 11568*x^8 + 16832*x^7 - 14508*x^6 + 9552*x^5 - 4776*x^4 + 204*x^3 + 360*x^2 - 600*x + 500)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 + 16*x^19 - 6*x^18 + 60*x^17 + 24*x^16 - 262*x^15 + 630*x^14 - 2088*x^13 + 2404*x^12 - 2916*x^11 - 68*x^10 + 6420*x^9 - 11568*x^8 + 16832*x^7 - 14508*x^6 + 9552*x^5 - 4776*x^4 + 204*x^3 + 360*x^2 - 600*x + 500, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 + 16*x^19 - 6*x^18 + 60*x^17 + 24*x^16 - 262*x^15 + 630*x^14 - 2088*x^13 + 2404*x^12 - 2916*x^11 - 68*x^10 + 6420*x^9 - 11568*x^8 + 16832*x^7 - 14508*x^6 + 9552*x^5 - 4776*x^4 + 204*x^3 + 360*x^2 - 600*x + 500);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 + 16*x^19 - 6*x^18 + 60*x^17 + 24*x^16 - 262*x^15 + 630*x^14 - 2088*x^13 + 2404*x^12 - 2916*x^11 - 68*x^10 + 6420*x^9 - 11568*x^8 + 16832*x^7 - 14508*x^6 + 9552*x^5 - 4776*x^4 + 204*x^3 + 360*x^2 - 600*x + 500);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{21}:C_6$ (as 21T11):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 126
The 15 conjugacy class representatives for $C_{21}:C_6$
Character table for $C_{21}:C_6$

Intermediate fields

3.1.44.1, 7.7.1817487424.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $21$ ${\href{/padicField/5.3.0.1}{3} }^{7}$ ${\href{/padicField/7.14.0.1}{14} }{,}\,{\href{/padicField/7.7.0.1}{7} }$ R ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.14.0.1}{14} }{,}\,{\href{/padicField/17.7.0.1}{7} }$ ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.3.0.1}{3} }^{7}$ ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.3.0.1}{3} }^{7}$ ${\href{/padicField/37.3.0.1}{3} }^{7}$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.14.0.1}{14} }{,}\,{\href{/padicField/43.7.0.1}{7} }$ ${\href{/padicField/47.3.0.1}{3} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ ${\href{/padicField/53.3.0.1}{3} }^{6}{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ ${\href{/padicField/59.3.0.1}{3} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.21.20.1$x^{21} + 2$$21$$1$$20$21T11$[\ ]_{21}^{6}$
\(11\) Copy content Toggle raw display $\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
11.2.1.2$x^{2} + 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.3.0.1$x^{3} + 2 x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
11.3.0.1$x^{3} + 2 x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
11.6.3.2$x^{6} + 37 x^{4} + 18 x^{3} + 367 x^{2} - 558 x + 972$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
11.6.3.2$x^{6} + 37 x^{4} + 18 x^{3} + 367 x^{2} - 558 x + 972$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(73\) Copy content Toggle raw display $\Q_{73}$$x + 68$$1$$1$$0$Trivial$[\ ]$
73.2.0.1$x^{2} + 70 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
73.3.2.1$x^{3} + 73$$3$$1$$2$$C_3$$[\ ]_{3}$
73.3.2.1$x^{3} + 73$$3$$1$$2$$C_3$$[\ ]_{3}$
73.6.4.1$x^{6} + 210 x^{5} + 14715 x^{4} + 345246 x^{3} + 88905 x^{2} + 1076160 x + 24967804$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
73.6.4.1$x^{6} + 210 x^{5} + 14715 x^{4} + 345246 x^{3} + 88905 x^{2} + 1076160 x + 24967804$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$