Properties

Label 11.6.3.2
Base \(\Q_{11}\)
Degree \(6\)
e \(2\)
f \(3\)
c \(3\)
Galois group $C_6$ (as 6T1)

Related objects

Learn more

Defining polynomial

\(x^{6} - 121 x^{2} + 3993\)  Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $6$
Ramification exponent $e$: $2$
Residue field degree $f$: $3$
Discriminant exponent $c$: $3$
Discriminant root field: $\Q_{11}(\sqrt{11\cdot 2})$
Root number: $-i$
$|\Gal(K/\Q_{ 11 })|$: $6$
This field is Galois and abelian over $\Q_{11}.$

Intermediate fields

$\Q_{11}(\sqrt{11\cdot 2})$, 11.3.0.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Unramified/totally ramified tower

Unramified subfield:11.3.0.1 $\cong \Q_{11}(t)$ where $t$ is a root of \( x^{3} - x + 3 \)  Toggle raw display
Relative Eisenstein polynomial:\( x^{2} - 11 t \)$\ \in\Q_{11}(t)[x]$  Toggle raw display

Invariants of the Galois closure

Galois group:$C_6$ (as 6T1)
Inertia group:Intransitive group isomorphic to $C_2$
Wild inertia group:$C_1$
Unramified degree:$3$
Tame degree:$2$
Wild slopes:None
Galois mean slope:$1/2$
Galois splitting model:$x^{6} - x^{5} + 4 x^{4} - 3 x^{3} + 29 x^{2} - 4 x + 71$