Group action invariants
| Degree $n$ : | $21$ | |
| Transitive number $t$ : | $11$ | |
| Group : | $S_3\times C_7:C_3$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,5)(2,10,6)(3,11,4)(7,15,17)(8,13,18)(9,14,16)(19,21,20), (1,6,16,3,4,18)(2,5,17)(7,9)(10,21,13,12,19,15)(11,20,14) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 3: $C_3$ 6: $S_3$, $C_6$ 18: $S_3\times C_3$ 21: $C_7:C_3$ 42: $(C_7:C_3) \times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 7: $C_7:C_3$
Low degree siblings
42T19, 42T23Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $7$ | $3$ | $( 4, 7,13)( 5, 8,14)( 6, 9,15)(10,19,16)(11,20,17)(12,21,18)$ |
| $ 3, 3, 3, 3, 3, 3, 1, 1, 1 $ | $7$ | $3$ | $( 4,13, 7)( 5,14, 8)( 6,15, 9)(10,16,19)(11,17,20)(12,18,21)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $2$ | $( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)$ |
| $ 6, 6, 3, 3, 2, 1 $ | $21$ | $6$ | $( 2, 3)( 4, 7,13)( 5, 9,14, 6, 8,15)(10,19,16)(11,21,17,12,20,18)$ |
| $ 6, 6, 3, 3, 2, 1 $ | $21$ | $6$ | $( 2, 3)( 4,13, 7)( 5,15, 8, 6,14, 9)(10,16,19)(11,18,20,12,17,21)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $2$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $14$ | $3$ | $( 1, 2, 3)( 4, 8,15)( 5, 9,13)( 6, 7,14)(10,20,18)(11,21,16)(12,19,17)$ |
| $ 3, 3, 3, 3, 3, 3, 3 $ | $14$ | $3$ | $( 1, 2, 3)( 4,14, 9)( 5,15, 7)( 6,13, 8)(10,17,21)(11,18,19)(12,16,20)$ |
| $ 7, 7, 7 $ | $3$ | $7$ | $( 1, 4, 7,10,13,16,19)( 2, 5, 8,11,14,17,20)( 3, 6, 9,12,15,18,21)$ |
| $ 14, 7 $ | $9$ | $14$ | $( 1, 4, 7,10,13,16,19)( 2, 6, 8,12,14,18,20, 3, 5, 9,11,15,17,21)$ |
| $ 21 $ | $6$ | $21$ | $( 1, 5, 9,10,14,18,19, 2, 6, 7,11,15,16,20, 3, 4, 8,12,13,17,21)$ |
| $ 7, 7, 7 $ | $3$ | $7$ | $( 1,10,19, 7,16, 4,13)( 2,11,20, 8,17, 5,14)( 3,12,21, 9,18, 6,15)$ |
| $ 14, 7 $ | $9$ | $14$ | $( 1,10,19, 7,16, 4,13)( 2,12,20, 9,17, 6,14, 3,11,21, 8,18, 5,15)$ |
| $ 21 $ | $6$ | $21$ | $( 1,11,21, 7,17, 6,13, 2,12,19, 8,18, 4,14, 3,10,20, 9,16, 5,15)$ |
Group invariants
| Order: | $126=2 \cdot 3^{2} \cdot 7$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [126, 8] |
| Character table: |
2 1 1 1 1 1 1 . . . 1 1 . 1 1 .
3 2 2 2 1 1 1 2 2 2 1 . 1 1 . 1
7 1 . . 1 . . 1 . . 1 1 1 1 1 1
1a 3a 3b 2a 6a 6b 3c 3d 3e 7a 14a 21a 7b 14b 21b
2P 1a 3b 3a 1a 3b 3a 3c 3e 3d 7a 7a 21a 7b 7b 21b
3P 1a 1a 1a 2a 2a 2a 1a 1a 1a 7b 14b 7b 7a 14a 7a
5P 1a 3b 3a 2a 6b 6a 3c 3e 3d 7b 14b 21b 7a 14a 21a
7P 1a 3a 3b 2a 6a 6b 3c 3d 3e 1a 2a 3c 1a 2a 3c
11P 1a 3b 3a 2a 6b 6a 3c 3e 3d 7a 14a 21a 7b 14b 21b
13P 1a 3a 3b 2a 6a 6b 3c 3d 3e 7b 14b 21b 7a 14a 21a
17P 1a 3b 3a 2a 6b 6a 3c 3e 3d 7b 14b 21b 7a 14a 21a
19P 1a 3a 3b 2a 6a 6b 3c 3d 3e 7b 14b 21b 7a 14a 21a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1
X.3 1 A /A -1 -A -/A 1 A /A 1 -1 1 1 -1 1
X.4 1 /A A -1 -/A -A 1 /A A 1 -1 1 1 -1 1
X.5 1 A /A 1 A /A 1 A /A 1 1 1 1 1 1
X.6 1 /A A 1 /A A 1 /A A 1 1 1 1 1 1
X.7 2 2 2 . . . -1 -1 -1 2 . -1 2 . -1
X.8 2 B /B . . . -1 -A -/A 2 . -1 2 . -1
X.9 2 /B B . . . -1 -/A -A 2 . -1 2 . -1
X.10 3 . . -3 . . 3 . . C -C C /C -/C /C
X.11 3 . . -3 . . 3 . . /C -/C /C C -C C
X.12 3 . . 3 . . 3 . . C C C /C /C /C
X.13 3 . . 3 . . 3 . . /C /C /C C C C
X.14 6 . . . . . -3 . . D . -C /D . -/C
X.15 6 . . . . . -3 . . /D . -/C D . -C
A = E(3)^2
= (-1-Sqrt(-3))/2 = -1-b3
B = 2*E(3)^2
= -1-Sqrt(-3) = -1-i3
C = E(7)^3+E(7)^5+E(7)^6
= (-1-Sqrt(-7))/2 = -1-b7
D = 2*E(7)^3+2*E(7)^5+2*E(7)^6
= -1-Sqrt(-7) = -1-i7
|