Properties

Label 21.7.370...096.1
Degree $21$
Signature $[7, 7]$
Discriminant $-3.704\times 10^{44}$
Root discriminant \(132.53\)
Ramified primes $2,3,11,313$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_3^7.C_2\wr C_7:C_3$ (as 21T137)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 21*x^19 + 189*x^17 - 1253*x^15 + 7455*x^13 - 2856*x^12 - 32823*x^11 + 34272*x^10 + 80055*x^9 - 154224*x^8 - 53055*x^7 + 311072*x^6 - 146772*x^5 - 247080*x^4 + 270064*x^3 + 23616*x^2 - 145344*x + 58752)
 
gp: K = bnfinit(y^21 - 21*y^19 + 189*y^17 - 1253*y^15 + 7455*y^13 - 2856*y^12 - 32823*y^11 + 34272*y^10 + 80055*y^9 - 154224*y^8 - 53055*y^7 + 311072*y^6 - 146772*y^5 - 247080*y^4 + 270064*y^3 + 23616*y^2 - 145344*y + 58752, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 21*x^19 + 189*x^17 - 1253*x^15 + 7455*x^13 - 2856*x^12 - 32823*x^11 + 34272*x^10 + 80055*x^9 - 154224*x^8 - 53055*x^7 + 311072*x^6 - 146772*x^5 - 247080*x^4 + 270064*x^3 + 23616*x^2 - 145344*x + 58752);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 21*x^19 + 189*x^17 - 1253*x^15 + 7455*x^13 - 2856*x^12 - 32823*x^11 + 34272*x^10 + 80055*x^9 - 154224*x^8 - 53055*x^7 + 311072*x^6 - 146772*x^5 - 247080*x^4 + 270064*x^3 + 23616*x^2 - 145344*x + 58752)
 

\( x^{21} - 21 x^{19} + 189 x^{17} - 1253 x^{15} + 7455 x^{13} - 2856 x^{12} - 32823 x^{11} + 34272 x^{10} + \cdots + 58752 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[7, 7]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-370406424218316848968019199412507790681604096\) \(\medspace = -\,2^{15}\cdot 3^{19}\cdot 11\cdot 313^{12}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(132.53\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(11\), \(313\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-66}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{3}$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{4}$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{7}-\frac{1}{8}a^{5}+\frac{1}{8}a^{3}$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{8}-\frac{1}{8}a^{6}+\frac{1}{8}a^{4}$, $\frac{1}{16}a^{11}-\frac{1}{16}a^{10}-\frac{1}{16}a^{9}+\frac{1}{16}a^{8}-\frac{1}{16}a^{7}+\frac{1}{16}a^{6}+\frac{1}{16}a^{5}-\frac{1}{16}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{32}a^{12}-\frac{1}{16}a^{9}+\frac{1}{16}a^{8}+\frac{1}{16}a^{7}-\frac{1}{8}a^{6}-\frac{3}{16}a^{5}-\frac{3}{32}a^{4}+\frac{3}{16}a^{3}+\frac{1}{8}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{32}a^{13}-\frac{1}{16}a^{10}-\frac{1}{16}a^{9}+\frac{1}{16}a^{8}+\frac{1}{16}a^{6}+\frac{1}{32}a^{5}+\frac{3}{16}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{64}a^{14}-\frac{1}{64}a^{13}-\frac{1}{32}a^{11}-\frac{1}{16}a^{10}-\frac{3}{32}a^{8}+\frac{3}{32}a^{7}-\frac{5}{64}a^{6}+\frac{9}{64}a^{5}-\frac{1}{32}a^{4}+\frac{1}{16}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}a$, $\frac{1}{128}a^{15}+\frac{1}{128}a^{13}+\frac{1}{64}a^{11}-\frac{1}{16}a^{10}-\frac{3}{64}a^{9}+\frac{1}{16}a^{8}-\frac{3}{128}a^{7}-\frac{11}{128}a^{5}-\frac{3}{16}a^{4}-\frac{1}{4}a^{3}+\frac{7}{16}a^{2}-\frac{1}{8}a+\frac{1}{4}$, $\frac{1}{128}a^{16}-\frac{1}{128}a^{14}-\frac{1}{64}a^{13}-\frac{1}{64}a^{12}-\frac{1}{32}a^{11}-\frac{3}{64}a^{10}-\frac{1}{16}a^{9}+\frac{9}{128}a^{8}+\frac{3}{32}a^{7}-\frac{9}{128}a^{6}+\frac{5}{64}a^{5}+\frac{1}{16}a^{4}-\frac{1}{16}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{256}a^{17}-\frac{1}{256}a^{16}-\frac{1}{256}a^{15}-\frac{1}{256}a^{14}-\frac{1}{128}a^{12}-\frac{1}{128}a^{11}-\frac{1}{128}a^{10}-\frac{15}{256}a^{9}-\frac{29}{256}a^{8}+\frac{11}{256}a^{7}-\frac{13}{256}a^{6}-\frac{17}{128}a^{5}+\frac{1}{16}a^{4}+\frac{5}{32}a^{3}+\frac{3}{8}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{512}a^{18}-\frac{1}{256}a^{16}-\frac{1}{256}a^{15}-\frac{1}{512}a^{14}+\frac{3}{256}a^{13}+\frac{1}{128}a^{12}-\frac{1}{128}a^{11}+\frac{31}{512}a^{10}+\frac{5}{128}a^{9}-\frac{25}{256}a^{8}-\frac{9}{256}a^{7}+\frac{1}{512}a^{6}-\frac{13}{256}a^{5}+\frac{1}{32}a^{4}+\frac{11}{64}a^{3}-\frac{3}{8}a^{2}+\frac{3}{8}a-\frac{1}{8}$, $\frac{1}{512}a^{19}+\frac{1}{512}a^{15}-\frac{13}{512}a^{11}-\frac{1}{64}a^{10}-\frac{1}{64}a^{9}-\frac{1}{64}a^{8}-\frac{5}{512}a^{7}-\frac{7}{64}a^{6}-\frac{7}{64}a^{5}+\frac{5}{64}a^{4}-\frac{3}{32}a^{3}+\frac{1}{16}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{3072}a^{20}-\frac{1}{1024}a^{19}-\frac{1}{1024}a^{16}+\frac{3}{1024}a^{15}-\frac{5}{768}a^{14}-\frac{3}{256}a^{13}-\frac{7}{1024}a^{12}-\frac{3}{1024}a^{11}+\frac{3}{128}a^{10}-\frac{1}{128}a^{9}+\frac{53}{1024}a^{8}+\frac{49}{1024}a^{7}-\frac{7}{256}a^{6}+\frac{71}{768}a^{5}-\frac{31}{128}a^{4}+\frac{7}{64}a^{3}-\frac{1}{6}a^{2}-\frac{1}{16}a-\frac{1}{8}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $13$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{19}{64}a^{18}-\frac{171}{32}a^{16}-\frac{135}{128}a^{15}+\frac{2565}{64}a^{14}+\frac{2025}{128}a^{13}-248a^{12}-\frac{6075}{64}a^{11}+\frac{90429}{64}a^{10}-\frac{16103}{64}a^{9}-\frac{165375}{32}a^{8}+\frac{563229}{128}a^{7}+\frac{585895}{64}a^{6}-\frac{1820907}{128}a^{5}-\frac{62565}{16}a^{4}+\frac{34297}{2}a^{3}-\frac{76617}{16}a^{2}-\frac{63993}{8}a+\frac{19661}{4}$, $\frac{233}{512}a^{18}-\frac{2097}{256}a^{16}-\frac{411}{256}a^{15}+\frac{31455}{512}a^{14}+\frac{6165}{256}a^{13}-\frac{48671}{128}a^{12}-\frac{18495}{128}a^{11}+\frac{1109463}{512}a^{10}-\frac{50141}{128}a^{9}-\frac{2029185}{256}a^{8}+\frac{1734813}{256}a^{7}+\frac{7185249}{512}a^{6}-\frac{5603931}{256}a^{5}-\frac{47601}{8}a^{4}+\frac{1688431}{64}a^{3}-\frac{118665}{16}a^{2}-\frac{49215}{4}a+\frac{60629}{8}$, $\frac{1}{64}a^{18}-\frac{9}{32}a^{16}-\frac{1}{16}a^{15}+\frac{135}{64}a^{14}+\frac{15}{16}a^{13}-13a^{12}-\frac{45}{8}a^{11}+\frac{4719}{64}a^{10}-\frac{19}{2}a^{9}-\frac{8613}{32}a^{8}+\frac{3393}{16}a^{7}+\frac{30809}{64}a^{6}-\frac{11151}{16}a^{5}-\frac{3729}{16}a^{4}+\frac{6753}{8}a^{3}-\frac{819}{4}a^{2}-396a+229$, $\frac{85}{256}a^{18}-\frac{765}{128}a^{16}-\frac{73}{64}a^{15}+\frac{11475}{256}a^{14}+\frac{1095}{64}a^{13}-\frac{17769}{64}a^{12}-\frac{3285}{32}a^{11}+\frac{405387}{256}a^{10}-\frac{605}{2}a^{9}-\frac{741717}{128}a^{8}+\frac{322065}{64}a^{7}+\frac{2619933}{256}a^{6}-\frac{1037151}{64}a^{5}-\frac{134127}{32}a^{4}+\frac{624385}{32}a^{3}-\frac{90585}{16}a^{2}-\frac{72705}{8}a+5683$, $\frac{201}{256}a^{18}-\frac{1809}{128}a^{16}-\frac{357}{128}a^{15}+\frac{27135}{256}a^{14}+\frac{5355}{128}a^{13}-\frac{41977}{64}a^{12}-\frac{16065}{64}a^{11}+\frac{956631}{256}a^{10}-\frac{42603}{64}a^{9}-\frac{1749465}{128}a^{8}+\frac{1489779}{128}a^{7}+\frac{6197601}{256}a^{6}-\frac{4816341}{128}a^{5}-\frac{330597}{32}a^{4}+\frac{1451429}{32}a^{3}-\frac{101439}{8}a^{2}-\frac{84621}{4}a+\frac{52025}{4}$, $\frac{321}{512}a^{18}-\frac{2889}{256}a^{16}-\frac{579}{256}a^{15}+\frac{43335}{512}a^{14}+\frac{8685}{256}a^{13}-\frac{67007}{128}a^{12}-\frac{26055}{128}a^{11}+\frac{1526271}{512}a^{10}-\frac{65637}{128}a^{9}-\frac{2790585}{256}a^{8}+\frac{2353941}{256}a^{7}+\frac{9899897}{512}a^{6}-\frac{7624611}{256}a^{5}-\frac{134601}{16}a^{4}+\frac{2299007}{64}a^{3}-\frac{157617}{16}a^{2}-\frac{67065}{4}a+\frac{81749}{8}$, $\frac{594003}{1024}a^{20}-\frac{1301933}{1024}a^{19}-\frac{605711}{64}a^{18}+\frac{5328729}{256}a^{17}+\frac{66825931}{1024}a^{16}-\frac{147535213}{1024}a^{15}-\frac{53846697}{128}a^{14}+\frac{237561189}{256}a^{13}+\frac{2408838489}{1024}a^{12}-\frac{7014391759}{1024}a^{11}-\frac{280283369}{64}a^{10}+\frac{7648449503}{256}a^{9}-\frac{18325802655}{1024}a^{8}-\frac{53761602951}{1024}a^{7}+\frac{10649986661}{128}a^{6}+\frac{920236027}{256}a^{5}-\frac{12222411863}{128}a^{4}+\frac{3905114165}{64}a^{3}+28117993a^{2}-\frac{755128357}{16}a+\frac{128659013}{8}$, $\frac{4955}{3072}a^{20}-\frac{3253}{1024}a^{19}-\frac{13369}{512}a^{18}+\frac{3261}{64}a^{17}+\frac{181881}{1024}a^{16}-\frac{354877}{1024}a^{15}-\frac{1745963}{1536}a^{14}+\frac{288321}{128}a^{13}+\frac{6475739}{1024}a^{12}-\frac{17535207}{1024}a^{11}-\frac{6147819}{512}a^{10}+\frac{4818241}{64}a^{9}-\frac{45451749}{1024}a^{8}-\frac{133753031}{1024}a^{7}+\frac{107248909}{512}a^{6}+\frac{1132637}{384}a^{5}-\frac{30400291}{128}a^{4}+\frac{1289701}{8}a^{3}+\frac{1562383}{24}a^{2}-\frac{1953811}{16}a+44087$, $\frac{69505}{1536}a^{20}-\frac{25295}{256}a^{19}-\frac{188613}{256}a^{18}+\frac{412997}{256}a^{17}+\frac{2595629}{512}a^{16}-\frac{1426121}{128}a^{15}-\frac{6274249}{192}a^{14}+\frac{9194265}{128}a^{13}+\frac{93455173}{512}a^{12}-\frac{135880031}{256}a^{11}-\frac{86491713}{256}a^{10}+\frac{591749997}{256}a^{9}-\frac{712997853}{512}a^{8}-\frac{64733865}{16}a^{7}+\frac{824254849}{128}a^{6}+\frac{46687765}{192}a^{5}-\frac{117773033}{16}a^{4}+\frac{75776113}{16}a^{3}+\frac{25808663}{12}a^{2}-\frac{14592411}{4}a+\frac{2497285}{2}$, $\frac{61927}{1536}a^{20}+\frac{2591}{256}a^{19}-\frac{449129}{512}a^{18}-\frac{17273}{64}a^{17}+\frac{4209719}{512}a^{16}+\frac{405047}{128}a^{15}-\frac{84888869}{1536}a^{14}-\frac{6180805}{256}a^{13}+\frac{167776419}{512}a^{12}+\frac{8624767}{256}a^{11}-\frac{769438367}{512}a^{10}+\frac{91100949}{128}a^{9}+\frac{2194047417}{512}a^{8}-4489799a^{7}-\frac{3086581121}{512}a^{6}+\frac{8347770349}{768}a^{5}+\frac{14653333}{8}a^{4}-\frac{734766535}{64}a^{3}+\frac{164749337}{48}a^{2}+\frac{19814309}{4}a-\frac{22867613}{8}$, $\frac{3253009}{768}a^{20}-\frac{697643}{512}a^{19}-\frac{13004869}{128}a^{18}+\frac{2317497}{256}a^{17}+\frac{66134755}{64}a^{16}+\frac{71846363}{512}a^{15}-\frac{5402931479}{768}a^{14}-\frac{52436715}{32}a^{13}+\frac{10688053659}{256}a^{12}-\frac{782615717}{512}a^{11}-\frac{6178116645}{32}a^{10}+\frac{27024286085}{256}a^{9}+\frac{70631418101}{128}a^{8}-\frac{313214922123}{512}a^{7}-\frac{198780459073}{256}a^{6}+\frac{560479327711}{384}a^{5}+\frac{12920357917}{64}a^{4}-\frac{24633903405}{16}a^{3}+\frac{23852086969}{48}a^{2}+\frac{2617371925}{4}a-\frac{1639750493}{4}$, $\frac{156559}{1024}a^{20}+\frac{354439}{1024}a^{19}-\frac{345087}{128}a^{18}-\frac{863235}{128}a^{17}+\frac{18900715}{1024}a^{16}+\frac{55551691}{1024}a^{15}-\frac{26306439}{256}a^{14}-\frac{85248925}{256}a^{13}+\frac{591485237}{1024}a^{12}+\frac{1525706325}{1024}a^{11}-\frac{87311837}{32}a^{10}-\frac{240137331}{64}a^{9}+\frac{9237790793}{1024}a^{8}+\frac{4084567497}{1024}a^{7}-\frac{4394144923}{256}a^{6}+\frac{511477015}{256}a^{5}+\frac{2189649933}{128}a^{4}-\frac{441663509}{64}a^{3}-\frac{125955059}{16}a^{2}+\frac{71081541}{16}a+\frac{7944773}{8}$, $\frac{1291919}{3072}a^{20}+\frac{624415}{1024}a^{19}-\frac{4204337}{512}a^{18}-\frac{1600457}{128}a^{17}+\frac{67694629}{1024}a^{16}+\frac{110147199}{1024}a^{15}-\frac{621235931}{1536}a^{14}-\frac{87231297}{128}a^{13}+\frac{2390915599}{1024}a^{12}+\frac{2835928069}{1024}a^{11}-\frac{5553741987}{512}a^{10}-\frac{504542149}{128}a^{9}+\frac{33808061375}{1024}a^{8}-\frac{10704924867}{1024}a^{7}-\frac{27811783219}{512}a^{6}+\frac{17701372529}{384}a^{5}+\frac{4730142517}{128}a^{4}-\frac{458187111}{8}a^{3}+\frac{12131689}{24}a^{2}+\frac{431239565}{16}a-\frac{20748923}{2}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2319698880310000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{7}\cdot 2319698880310000 \cdot 1}{2\cdot\sqrt{370406424218316848968019199412507790681604096}}\cr\approx \mathstrut & 2.98216322391208 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - 21*x^19 + 189*x^17 - 1253*x^15 + 7455*x^13 - 2856*x^12 - 32823*x^11 + 34272*x^10 + 80055*x^9 - 154224*x^8 - 53055*x^7 + 311072*x^6 - 146772*x^5 - 247080*x^4 + 270064*x^3 + 23616*x^2 - 145344*x + 58752)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - 21*x^19 + 189*x^17 - 1253*x^15 + 7455*x^13 - 2856*x^12 - 32823*x^11 + 34272*x^10 + 80055*x^9 - 154224*x^8 - 53055*x^7 + 311072*x^6 - 146772*x^5 - 247080*x^4 + 270064*x^3 + 23616*x^2 - 145344*x + 58752, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - 21*x^19 + 189*x^17 - 1253*x^15 + 7455*x^13 - 2856*x^12 - 32823*x^11 + 34272*x^10 + 80055*x^9 - 154224*x^8 - 53055*x^7 + 311072*x^6 - 146772*x^5 - 247080*x^4 + 270064*x^3 + 23616*x^2 - 145344*x + 58752);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 21*x^19 + 189*x^17 - 1253*x^15 + 7455*x^13 - 2856*x^12 - 32823*x^11 + 34272*x^10 + 80055*x^9 - 154224*x^8 - 53055*x^7 + 311072*x^6 - 146772*x^5 - 247080*x^4 + 270064*x^3 + 23616*x^2 - 145344*x + 58752);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^7.C_2\wr C_7:C_3$ (as 21T137):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 5878656
The 183 conjugacy class representatives for $C_3^7.C_2\wr C_7:C_3$
Character table for $C_3^7.C_2\wr C_7:C_3$

Intermediate fields

7.7.9597924961.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 42 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R $21$ $21$ R ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.9.0.1}{9} }{,}\,{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.7.0.1}{7} }$ $21$ ${\href{/padicField/29.9.0.1}{9} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.9.0.1}{9} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{3}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{3}$ ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{3}$ ${\href{/padicField/53.7.0.1}{7} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display $\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.3.1$x^{2} + 4 x + 2$$2$$1$$3$$C_2$$[3]$
2.3.0.1$x^{3} + x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.3.0.1$x^{3} + x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.1$x^{6} + 6 x^{5} + 34 x^{4} + 80 x^{3} + 204 x^{2} + 216 x + 216$$2$$3$$6$$A_4$$[2, 2]^{3}$
2.6.6.4$x^{6} - 4 x^{5} + 14 x^{4} - 24 x^{3} + 100 x^{2} + 48 x + 88$$2$$3$$6$$A_4\times C_2$$[2, 2, 2]^{3}$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.9.9.6$x^{9} - 6 x^{8} + 45 x^{7} + 594 x^{6} + 99 x^{5} + 108 x^{4} - 54 x^{3} + 27 x^{2} + 81 x + 27$$3$$3$$9$$S_3\times C_3$$[3/2]_{2}^{3}$
3.9.9.4$x^{9} - 24 x^{8} + 318 x^{7} - 189 x^{6} + 1080 x^{5} + 2826 x^{4} + 1350 x^{3} - 108 x^{2} - 54 x + 27$$3$$3$$9$$(C_3^3:C_3):C_2$$[3/2, 3/2, 3/2]_{2}^{3}$
\(11\) Copy content Toggle raw display $\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
11.2.1.2$x^{2} + 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.3.0.1$x^{3} + 2 x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
11.3.0.1$x^{3} + 2 x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
11.3.0.1$x^{3} + 2 x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
11.3.0.1$x^{3} + 2 x + 9$$1$$3$$0$$C_3$$[\ ]^{3}$
11.6.0.1$x^{6} + 3 x^{4} + 4 x^{3} + 6 x^{2} + 7 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
\(313\) Copy content Toggle raw display $\Q_{313}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$1$$2$$0$$C_2$$[\ ]^{2}$
Deg $3$$3$$1$$2$
Deg $3$$3$$1$$2$
Deg $3$$3$$1$$2$
Deg $3$$3$$1$$2$
Deg $6$$3$$2$$4$