Properties

Label 21T137
Order \(5878656\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $137$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,9,14,19,6,10,18)(2,8,15,21,4,12,17,3,7,13,20,5,11,16), (1,21,9,2,20,8)(3,19,7)(4,12,14,5,11,13)(6,10,15)(16,18,17)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
21:  $C_7:C_3$
42:  $(C_7:C_3) \times C_2$
168:  $C_2^3:(C_7: C_3)$ x 2
336:  14T18 x 2
1344:  14T35
2688:  14T44

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $C_7:C_3$

Low degree siblings

42T2494, 42T2495 x 2, 42T2496 x 2, 42T2497, 42T2498, 42T2510

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 183 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $5878656=2^{7} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.