Normalized defining polynomial
\( x^{21} - x^{20} - 9 x^{19} + 10 x^{18} + 28 x^{17} - 211 x^{16} + 324 x^{15} + 384 x^{14} - 1692 x^{13} + 1991 x^{12} + 2315 x^{11} - 1214 x^{10} - 9164 x^{9} - 5328 x^{8} + 34796 x^{7} - 21283 x^{6} - 16215 x^{5} + 19798 x^{4} - 2184 x^{3} - 3057 x^{2} + 711 x - 41 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13347832346292311387708944226103=-\,3^{7}\cdot 29^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{41} a^{15} - \frac{14}{41} a^{14} + \frac{20}{41} a^{13} - \frac{2}{41} a^{12} - \frac{2}{41} a^{11} - \frac{18}{41} a^{10} + \frac{13}{41} a^{9} - \frac{11}{41} a^{8} + \frac{15}{41} a^{7} - \frac{13}{41} a^{6} + \frac{15}{41} a^{5} + \frac{12}{41} a^{4} + \frac{2}{41} a^{3} - \frac{18}{41} a$, $\frac{1}{41} a^{16} - \frac{12}{41} a^{14} - \frac{9}{41} a^{13} + \frac{11}{41} a^{12} - \frac{5}{41} a^{11} + \frac{7}{41} a^{10} + \frac{7}{41} a^{9} - \frac{16}{41} a^{8} - \frac{8}{41} a^{7} - \frac{3}{41} a^{6} + \frac{17}{41} a^{5} + \frac{6}{41} a^{4} - \frac{13}{41} a^{3} - \frac{18}{41} a^{2} - \frac{6}{41} a$, $\frac{1}{41} a^{17} - \frac{13}{41} a^{14} + \frac{5}{41} a^{13} + \frac{12}{41} a^{12} - \frac{17}{41} a^{11} - \frac{4}{41} a^{10} + \frac{17}{41} a^{9} - \frac{17}{41} a^{8} + \frac{13}{41} a^{7} - \frac{16}{41} a^{6} - \frac{19}{41} a^{5} + \frac{8}{41} a^{4} + \frac{6}{41} a^{3} - \frac{6}{41} a^{2} - \frac{11}{41} a$, $\frac{1}{41} a^{18} - \frac{13}{41} a^{14} - \frac{15}{41} a^{13} - \frac{2}{41} a^{12} + \frac{11}{41} a^{11} - \frac{12}{41} a^{10} - \frac{12}{41} a^{9} - \frac{7}{41} a^{8} + \frac{15}{41} a^{7} + \frac{17}{41} a^{6} - \frac{2}{41} a^{5} - \frac{2}{41} a^{4} + \frac{20}{41} a^{3} - \frac{11}{41} a^{2} + \frac{12}{41} a$, $\frac{1}{41} a^{19} + \frac{8}{41} a^{14} + \frac{12}{41} a^{13} - \frac{15}{41} a^{12} + \frac{3}{41} a^{11} - \frac{2}{41} a^{9} - \frac{5}{41} a^{8} + \frac{7}{41} a^{7} - \frac{7}{41} a^{6} - \frac{12}{41} a^{5} + \frac{12}{41} a^{4} + \frac{15}{41} a^{3} + \frac{12}{41} a^{2} + \frac{12}{41} a$, $\frac{1}{365563799184390541497995162065545955799} a^{20} - \frac{1776999270702097912359924674636854732}{365563799184390541497995162065545955799} a^{19} + \frac{4228711311334994834608408365495602852}{365563799184390541497995162065545955799} a^{18} + \frac{2861593344425352373586600460792592126}{365563799184390541497995162065545955799} a^{17} - \frac{1274798571521345190959222018525723704}{365563799184390541497995162065545955799} a^{16} + \frac{2200670510997224679006515228810069431}{365563799184390541497995162065545955799} a^{15} + \frac{52824015022055143680422552124722292760}{365563799184390541497995162065545955799} a^{14} - \frac{131650121961001651014395231598812813828}{365563799184390541497995162065545955799} a^{13} - \frac{164204834393031154861557971100885355214}{365563799184390541497995162065545955799} a^{12} + \frac{25423088297481639129073503427556826755}{365563799184390541497995162065545955799} a^{11} + \frac{49858553592851114973264068653850579280}{365563799184390541497995162065545955799} a^{10} - \frac{25023426337938327464486692890191357538}{365563799184390541497995162065545955799} a^{9} + \frac{157396572160357961624248312168099164281}{365563799184390541497995162065545955799} a^{8} + \frac{138396505426880684252780716405008413837}{365563799184390541497995162065545955799} a^{7} + \frac{78887663111406784708608528067517710581}{365563799184390541497995162065545955799} a^{6} - \frac{64734706597477419830190802439452721837}{365563799184390541497995162065545955799} a^{5} + \frac{103758077087866981108295034759345776655}{365563799184390541497995162065545955799} a^{4} + \frac{18554932622691161613226065733281559781}{365563799184390541497995162065545955799} a^{3} + \frac{131072072777462277791260352512244653023}{365563799184390541497995162065545955799} a^{2} + \frac{25146333915967143800952471146343495082}{365563799184390541497995162065545955799} a - \frac{2115148945441356319646095591183052524}{8916190224009525402390125904037706239}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35353252.3989 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7\times S_3$ (as 21T6):
| A solvable group of order 42 |
| The 21 conjugacy class representatives for $C_7\times S_3$ |
| Character table for $C_7\times S_3$ is not computed |
Intermediate fields
| 3.1.87.1, 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{21}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.7.0.1 | $x^{7} + x^{2} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 3.14.7.1 | $x^{14} - 54 x^{8} - 243 x^{4} - 729 x^{2} - 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |