Normalized defining polynomial
\( x^{21} - 21 x^{19} - 3 x^{18} + 186 x^{17} + 44 x^{16} - 908 x^{15} - 256 x^{14} + 2701 x^{13} + \cdots - 1 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[13, 4]$ |
| |
| Discriminant: |
\(30442588627548161668838591975407708094464\)
\(\medspace = 2^{14}\cdot 37^{7}\cdot 113\cdot 8273\cdot 385537\cdot 54305277821449\)
|
| |
| Root discriminant: | \(84.68\) |
| |
| Galois root discriminant: | $2^{2/3}37^{1/2}113^{1/2}8273^{1/2}385537^{1/2}54305277821449^{1/2}\approx 42718137712460.88$ | ||
| Ramified primes: |
\(2\), \(37\), \(113\), \(8273\), \(385537\), \(54305277821449\)
|
| |
| Discriminant root field: | $\Q(\sqrt{72418\!\cdots\!82669}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{10}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{12}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{4}a^{8}-\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{17}-\frac{1}{4}a^{13}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{18}-\frac{1}{4}a^{12}-\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}$, $\frac{1}{4}a^{19}-\frac{1}{4}a^{13}-\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}+\frac{1}{4}a$, $\frac{1}{4}a^{20}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $16$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{2}a^{19}-\frac{1}{2}a^{18}-10a^{17}+\frac{17}{2}a^{16}+\frac{169}{2}a^{15}-\frac{125}{2}a^{14}-\frac{783}{2}a^{13}+\frac{527}{2}a^{12}+1087a^{11}-\frac{1393}{2}a^{10}-\frac{3745}{2}a^{9}+\frac{2287}{2}a^{8}+2013a^{7}-\frac{2125}{2}a^{6}-\frac{2621}{2}a^{5}+463a^{4}+480a^{3}-41a^{2}-66a-7$, $a$, $a+1$, $\frac{1}{4}a^{20}+\frac{5}{4}a^{19}-\frac{13}{2}a^{18}-26a^{17}+\frac{273}{4}a^{16}+\frac{907}{4}a^{15}-392a^{14}-\frac{4305}{4}a^{13}+\frac{5595}{4}a^{12}+\frac{12175}{4}a^{11}-\frac{13155}{4}a^{10}-5326a^{9}+\frac{20275}{4}a^{8}+\frac{11619}{2}a^{7}-4732a^{6}-\frac{15213}{4}a^{5}+\frac{4597}{2}a^{4}+\frac{2729}{2}a^{3}-371a^{2}-\frac{345}{2}a-\frac{49}{4}$, $a^{20}+\frac{1}{2}a^{19}-\frac{87}{4}a^{18}-\frac{51}{4}a^{17}+\frac{399}{2}a^{16}+\frac{497}{4}a^{15}-\frac{4051}{4}a^{14}-\frac{2465}{4}a^{13}+\frac{12641}{4}a^{12}+1736a^{11}-\frac{25511}{4}a^{10}-2979a^{9}+\frac{16779}{2}a^{8}+\frac{13307}{4}a^{7}-\frac{13595}{2}a^{6}-\frac{4881}{2}a^{5}+\frac{11831}{4}a^{4}+\frac{4365}{4}a^{3}-440a^{2}-\frac{707}{4}a-\frac{25}{2}$, $\frac{1}{4}a^{20}-\frac{5}{4}a^{19}-4a^{18}+\frac{49}{2}a^{17}+\frac{99}{4}a^{16}-\frac{819}{4}a^{15}-62a^{14}+\frac{3793}{4}a^{13}-\frac{193}{4}a^{12}-\frac{10613}{4}a^{11}+\frac{2879}{4}a^{10}+4597a^{9}-\frac{7649}{4}a^{8}-\frac{9717}{2}a^{7}+2359a^{6}+\frac{11809}{4}a^{5}-1356a^{4}-919a^{3}+264a^{2}+\frac{193}{2}a+\frac{23}{4}$, $\frac{3}{4}a^{20}-\frac{5}{4}a^{19}-\frac{59}{4}a^{18}+\frac{93}{4}a^{17}+\frac{491}{4}a^{16}-187a^{15}-\frac{2233}{4}a^{14}+\frac{1703}{2}a^{13}+1498a^{12}-\frac{9579}{4}a^{11}-\frac{4785}{2}a^{10}+\frac{8439}{2}a^{9}+\frac{8711}{4}a^{8}-\frac{17987}{4}a^{7}-\frac{2013}{2}a^{6}+\frac{10719}{4}a^{5}+\frac{811}{4}a^{4}-\frac{3065}{4}a^{3}-28a^{2}+\frac{277}{4}a+\frac{23}{4}$, $5a^{20}+a^{19}-\frac{213}{2}a^{18}-\frac{69}{2}a^{17}+\frac{3829}{4}a^{16}+\frac{1521}{4}a^{15}-4754a^{14}-\frac{3993}{2}a^{13}+\frac{57827}{4}a^{12}+\frac{23151}{4}a^{11}-\frac{113197}{4}a^{10}-\frac{40917}{4}a^{9}+\frac{144029}{4}a^{8}+\frac{48517}{4}a^{7}-\frac{56417}{2}a^{6}-\frac{19371}{2}a^{5}+11846a^{4}+\frac{9295}{2}a^{3}-\frac{6453}{4}a^{2}-\frac{3023}{4}a-64$, $\frac{29}{4}a^{20}+\frac{5}{2}a^{19}-\frac{623}{4}a^{18}-\frac{281}{4}a^{17}+\frac{5639}{4}a^{16}+\frac{1433}{2}a^{15}-7044a^{14}-\frac{14549}{4}a^{13}+\frac{43087}{2}a^{12}+\frac{41633}{4}a^{11}-\frac{169615}{4}a^{10}-\frac{73197}{4}a^{9}+54203a^{8}+21467a^{7}-\frac{170299}{4}a^{6}-16803a^{5}+\frac{71473}{4}a^{4}+\frac{31275}{4}a^{3}-\frac{4753}{2}a^{2}-\frac{2491}{2}a-114$, $\frac{3}{4}a^{20}-\frac{1}{2}a^{19}-\frac{31}{2}a^{18}+8a^{17}+136a^{16}-56a^{15}-660a^{14}+234a^{13}+\frac{3895}{2}a^{12}-\frac{1299}{2}a^{11}-\frac{7281}{2}a^{10}+1166a^{9}+\frac{8697}{2}a^{8}-1192a^{7}-3206a^{6}+553a^{5}+1330a^{4}-\frac{35}{2}a^{3}-\frac{887}{4}a^{2}-31a-\frac{3}{4}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{17}-\frac{39}{4}a^{16}+\frac{33}{4}a^{15}+\frac{159}{2}a^{14}-\frac{117}{2}a^{13}-\frac{1397}{4}a^{12}+\frac{947}{4}a^{11}+\frac{3569}{4}a^{10}-\frac{2389}{4}a^{9}-\frac{5369}{4}a^{8}+\frac{3663}{4}a^{7}+1143a^{6}-739a^{5}-\frac{931}{2}a^{4}+230a^{3}+\frac{175}{4}a^{2}-\frac{55}{4}a-2$, $\frac{113}{4}a^{20}-\frac{13}{2}a^{19}-\frac{1179}{2}a^{18}+\frac{97}{2}a^{17}+5198a^{16}+88a^{15}-\frac{101141}{4}a^{14}-\frac{3437}{2}a^{13}+74894a^{12}+6126a^{11}-\frac{565985}{4}a^{10}-\frac{24197}{2}a^{9}+\frac{689259}{4}a^{8}+\frac{39765}{2}a^{7}-\frac{516267}{4}a^{6}-23862a^{5}+\frac{104719}{2}a^{4}+\frac{30945}{2}a^{3}-\frac{28109}{4}a^{2}-\frac{5791}{2}a-\frac{477}{2}$, $\frac{17}{4}a^{20}-\frac{9}{4}a^{19}-88a^{18}+34a^{17}+771a^{16}-\frac{897}{4}a^{15}-\frac{14899}{4}a^{14}+\frac{3631}{4}a^{13}+\frac{21823}{2}a^{12}-\frac{10213}{4}a^{11}-\frac{80757}{4}a^{10}+\frac{9405}{2}a^{9}+\frac{94853}{4}a^{8}-4717a^{7}-\frac{67407}{4}a^{6}+\frac{7351}{4}a^{5}+\frac{12831}{2}a^{4}+\frac{655}{2}a^{3}-\frac{3297}{4}a^{2}-193a-11$, $39a^{20}-\frac{79}{4}a^{19}-\frac{3211}{4}a^{18}+\frac{1133}{4}a^{17}+6985a^{16}-\frac{6853}{4}a^{15}-\frac{133913}{4}a^{14}+6162a^{13}+\frac{389015}{4}a^{12}-15317a^{11}-\frac{715091}{4}a^{10}+\frac{97089}{4}a^{9}+\frac{419957}{2}a^{8}-16312a^{7}-151134a^{6}-\frac{20103}{4}a^{5}+\frac{237557}{4}a^{4}+\frac{46153}{4}a^{3}-\frac{15799}{2}a^{2}-2734a-212$, $\frac{9}{4}a^{20}-\frac{1}{4}a^{19}-\frac{191}{4}a^{18}-a^{17}+429a^{16}+\frac{177}{4}a^{15}-2134a^{14}-\frac{1159}{4}a^{13}+\frac{25995}{4}a^{12}+\frac{3337}{4}a^{11}-12703a^{10}-1333a^{9}+\frac{64393}{4}a^{8}+1575a^{7}-\frac{50539}{4}a^{6}-\frac{6059}{4}a^{5}+\frac{21745}{4}a^{4}+922a^{3}-\frac{3421}{4}a^{2}-151a-4$, $\frac{37}{2}a^{20}-\frac{35}{4}a^{19}-\frac{765}{2}a^{18}+\frac{495}{4}a^{17}+3345a^{16}-740a^{15}-\frac{64519}{4}a^{14}+\frac{5371}{2}a^{13}+47218a^{12}-\frac{27963}{4}a^{11}-\frac{350501}{4}a^{10}+\frac{24021}{2}a^{9}+\frac{416045}{4}a^{8}-\frac{39009}{4}a^{7}-\frac{302483}{4}a^{6}+\frac{517}{4}a^{5}+30001a^{4}+\frac{16713}{4}a^{3}-4152a^{2}-\frac{4327}{4}a-\frac{279}{4}$
|
| |
| Regulator: | \( 5098826311570 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{13}\cdot(2\pi)^{4}\cdot 5098826311570 \cdot 1}{2\cdot\sqrt{30442588627548161668838591975407708094464}}\cr\approx \mathstrut & 0.186555840528488 \end{aligned}\] (assuming GRH)
Galois group
$S_7\wr C_3.C_2$ (as 21T162):
| A non-solvable group of order 768144384000 |
| The 920 conjugacy class representatives for $S_7\wr C_3.C_2$ |
| Character table for $S_7\wr C_3.C_2$ |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.9.0.1}{9} }^{2}{,}\,{\href{/padicField/3.3.0.1}{3} }$ | ${\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | $15{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.12.0.1}{12} }{,}\,{\href{/padicField/11.3.0.1}{3} }^{3}$ | ${\href{/padicField/13.14.0.1}{14} }{,}\,{\href{/padicField/13.7.0.1}{7} }$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.7.0.1}{7} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.4.0.1}{4} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | R | ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }$ | ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.7.0.1}{7} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | $18{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{3}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{6}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.7.3.14a1.1 | $x^{21} + 3 x^{15} + 3 x^{14} + 3 x^{9} + 6 x^{8} + 3 x^{7} + x^{3} + 3 x^{2} + 3 x + 3$ | $3$ | $7$ | $14$ | 21T6 | $$[\ ]_{3}^{14}$$ |
|
\(37\)
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 37.2.2.2a1.2 | $x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 37.6.1.0a1.1 | $x^{6} + 35 x^{3} + 4 x^{2} + 30 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
| 37.5.2.5a1.2 | $x^{10} + 20 x^{6} + 70 x^{5} + 100 x^{2} + 700 x + 1262$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ | |
|
\(113\)
| $\Q_{113}$ | $x + 110$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 113.2.1.0a1.1 | $x^{2} + 101 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 113.1.2.1a1.1 | $x^{2} + 113$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 113.4.1.0a1.1 | $x^{4} + 62 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 113.4.1.0a1.1 | $x^{4} + 62 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 113.8.1.0a1.1 | $x^{8} + 3 x^{4} + 98 x^{3} + 38 x^{2} + 28 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
|
\(8273\)
| $\Q_{8273}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{8273}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $10$ | $1$ | $10$ | $0$ | $C_{10}$ | $$[\ ]^{10}$$ | ||
|
\(385537\)
| $\Q_{385537}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
|
\(54305277821449\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ |