Properties

Label 21T162
Order \(768144384000\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $162$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,5,6,3)(2,4,7)(8,11,12,14,9,13,10)(15,21)(16,19,20,18), (1,14,6,13,4,8,7,10)(2,12,3,11,5,9)(15,21,19)(16,20,18,17), (1,14,15,3,11,16,2,10,17,5,9,19,7,13,18,4,8,21,6,12,20)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$
48:  $S_4\times C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $S_3$

Degree 7: None

Low degree siblings

42T8089, 42T8090, 42T8091, 42T8092, 42T8093, 42T8094, 42T8095

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 920 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $768144384000=2^{13} \cdot 3^{7} \cdot 5^{3} \cdot 7^{3}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.