Normalized defining polynomial
\( x^{21} - 21 x^{19} - 3 x^{18} + 186 x^{17} + 54 x^{16} - 898 x^{15} - 396 x^{14} + 2541 x^{13} + \cdots - 1 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[13, 4]$ |
| |
| Discriminant: |
\(16865213361316368677229831448817302529\)
\(\medspace = 7^{14}\cdot 41\cdot 167\cdot 5406197\cdot 671780022444019\)
|
| |
| Root discriminant: | \(59.25\) |
| |
| Galois root discriminant: | $7^{2/3}41^{1/2}167^{1/2}5406197^{1/2}671780022444019^{1/2}\approx 18247708437255.99$ | ||
| Ramified primes: |
\(7\), \(41\), \(167\), \(5406197\), \(671780022444019\)
|
| |
| Discriminant root field: | $\Q(\sqrt{24866\!\cdots\!82321}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{6}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{3}a^{12}+\frac{1}{3}a^{6}+\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{13}+\frac{1}{3}a^{6}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{9}a^{14}+\frac{1}{9}a^{12}+\frac{1}{9}a^{11}-\frac{1}{9}a^{9}+\frac{1}{9}a^{8}-\frac{1}{9}a^{7}-\frac{1}{9}a^{6}-\frac{2}{9}a^{4}+\frac{4}{9}a^{3}-\frac{2}{9}a^{2}+\frac{1}{9}a-\frac{2}{9}$, $\frac{1}{9}a^{15}+\frac{1}{9}a^{13}+\frac{1}{9}a^{12}-\frac{1}{9}a^{10}+\frac{1}{9}a^{9}-\frac{1}{9}a^{8}-\frac{1}{9}a^{7}-\frac{2}{9}a^{5}+\frac{4}{9}a^{4}-\frac{2}{9}a^{3}+\frac{1}{9}a^{2}-\frac{2}{9}a$, $\frac{1}{9}a^{16}+\frac{1}{9}a^{13}-\frac{1}{9}a^{12}+\frac{1}{9}a^{11}+\frac{1}{9}a^{10}+\frac{1}{9}a^{8}+\frac{1}{9}a^{7}-\frac{1}{9}a^{6}+\frac{4}{9}a^{5}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{2}{9}a+\frac{2}{9}$, $\frac{1}{9}a^{17}-\frac{1}{9}a^{13}-\frac{1}{9}a^{9}-\frac{1}{9}a^{6}+\frac{1}{3}a^{5}-\frac{4}{9}a^{4}+\frac{2}{9}a^{3}-\frac{2}{9}a^{2}-\frac{2}{9}a-\frac{4}{9}$, $\frac{1}{9}a^{18}+\frac{1}{9}a^{12}+\frac{1}{9}a^{11}-\frac{1}{9}a^{10}-\frac{1}{9}a^{9}+\frac{1}{9}a^{8}+\frac{1}{9}a^{7}+\frac{2}{9}a^{6}+\frac{2}{9}a^{5}-\frac{1}{3}a^{4}-\frac{4}{9}a^{3}-\frac{4}{9}a^{2}+\frac{4}{9}$, $\frac{1}{9}a^{19}+\frac{1}{9}a^{13}+\frac{1}{9}a^{12}-\frac{1}{9}a^{11}-\frac{1}{9}a^{10}+\frac{1}{9}a^{9}+\frac{1}{9}a^{8}-\frac{1}{9}a^{7}+\frac{2}{9}a^{6}-\frac{1}{9}a^{4}+\frac{2}{9}a^{3}+\frac{1}{9}a+\frac{1}{3}$, $\frac{1}{9}a^{20}+\frac{1}{9}a^{13}+\frac{1}{9}a^{12}+\frac{1}{9}a^{11}+\frac{1}{9}a^{10}-\frac{1}{9}a^{9}+\frac{1}{9}a^{8}-\frac{2}{9}a^{6}-\frac{4}{9}a^{5}+\frac{1}{9}a^{4}-\frac{4}{9}a^{3}-\frac{1}{3}a^{2}-\frac{4}{9}a+\frac{2}{9}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $16$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{9}a^{20}+\frac{1}{9}a^{19}-\frac{22}{9}a^{18}-\frac{8}{3}a^{17}+\frac{205}{9}a^{16}+\frac{241}{9}a^{15}-\frac{1048}{9}a^{14}-\frac{1313}{9}a^{13}+353a^{12}+\frac{4199}{9}a^{11}-\frac{5774}{9}a^{10}-\frac{2669}{3}a^{9}+\frac{2024}{3}a^{8}+\frac{8987}{9}a^{7}-\frac{3194}{9}a^{6}-\frac{5692}{9}a^{5}+\frac{55}{3}a^{4}+\frac{1541}{9}a^{3}+\frac{214}{9}a^{2}-\frac{139}{9}a-\frac{22}{9}$, $\frac{1}{9}a^{20}+\frac{1}{9}a^{19}-\frac{22}{9}a^{18}-\frac{8}{3}a^{17}+\frac{205}{9}a^{16}+\frac{241}{9}a^{15}-\frac{1048}{9}a^{14}-\frac{1313}{9}a^{13}+353a^{12}+\frac{4199}{9}a^{11}-\frac{5774}{9}a^{10}-\frac{2669}{3}a^{9}+\frac{2024}{3}a^{8}+\frac{8987}{9}a^{7}-\frac{3194}{9}a^{6}-\frac{5692}{9}a^{5}+\frac{55}{3}a^{4}+\frac{1541}{9}a^{3}+\frac{214}{9}a^{2}-\frac{139}{9}a-\frac{13}{9}$, $a$, $a^{20}-a^{19}-20a^{18}+17a^{17}+169a^{16}-115a^{15}-783a^{14}+387a^{13}+2154a^{12}-643a^{11}-3566a^{10}+356a^{9}+3473a^{8}+373a^{7}-1852a^{6}-647a^{5}+344a^{4}+193a^{3}-3a^{2}-12a$, $\frac{1}{9}a^{20}+\frac{1}{9}a^{19}-\frac{22}{9}a^{18}-\frac{8}{3}a^{17}+\frac{205}{9}a^{16}+\frac{241}{9}a^{15}-\frac{1048}{9}a^{14}-\frac{1313}{9}a^{13}+353a^{12}+\frac{4199}{9}a^{11}-\frac{5774}{9}a^{10}-\frac{2669}{3}a^{9}+\frac{2024}{3}a^{8}+\frac{8987}{9}a^{7}-\frac{3194}{9}a^{6}-\frac{5692}{9}a^{5}+\frac{55}{3}a^{4}+\frac{1541}{9}a^{3}+\frac{214}{9}a^{2}-\frac{148}{9}a-\frac{13}{9}$, $\frac{28}{9}a^{20}-\frac{2}{3}a^{19}-\frac{196}{3}a^{18}+\frac{44}{9}a^{17}+\frac{1741}{3}a^{16}+\frac{358}{9}a^{15}-2824a^{14}-\frac{1799}{3}a^{13}+\frac{73160}{9}a^{12}+\frac{25744}{9}a^{11}-\frac{41869}{3}a^{10}-\frac{61229}{9}a^{9}+\frac{41306}{3}a^{8}+\frac{79427}{9}a^{7}-\frac{61939}{9}a^{6}-6242a^{5}+\frac{1855}{3}a^{4}+\frac{14245}{9}a^{3}+\frac{596}{3}a^{2}-\frac{1036}{9}a-\frac{41}{3}$, $\frac{1}{3}a^{19}-\frac{1}{3}a^{18}-\frac{20}{3}a^{17}+\frac{17}{3}a^{16}+\frac{169}{3}a^{15}-\frac{115}{3}a^{14}-261a^{13}+129a^{12}+718a^{11}-\frac{643}{3}a^{10}-\frac{3566}{3}a^{9}+\frac{356}{3}a^{8}+\frac{3473}{3}a^{7}+\frac{373}{3}a^{6}-\frac{1853}{3}a^{5}-\frac{646}{3}a^{4}+\frac{350}{3}a^{3}+\frac{188}{3}a^{2}-\frac{8}{3}a-\frac{10}{3}$, $\frac{25}{9}a^{20}-\frac{7}{9}a^{19}-\frac{524}{9}a^{18}+8a^{17}+\frac{4649}{9}a^{16}+\frac{47}{9}a^{15}-\frac{22624}{9}a^{14}-\frac{3593}{9}a^{13}+\frac{21754}{3}a^{12}+\frac{19810}{9}a^{11}-\frac{112685}{9}a^{10}-5556a^{9}+12503a^{8}+7489a^{7}-\frac{19268}{3}a^{6}-\frac{49291}{9}a^{5}+705a^{4}+1466a^{3}+192a^{2}-\frac{290}{3}a-\frac{37}{3}$, $\frac{20}{3}a^{20}-\frac{19}{3}a^{19}-\frac{403}{3}a^{18}+\frac{971}{9}a^{17}+\frac{10300}{9}a^{16}-\frac{6586}{9}a^{15}-\frac{16048}{3}a^{14}+\frac{22249}{9}a^{13}+\frac{133690}{9}a^{12}-\frac{37241}{9}a^{11}-\frac{223501}{9}a^{10}+\frac{7058}{3}a^{9}+\frac{219761}{9}a^{8}+\frac{21239}{9}a^{7}-13150a^{6}-\frac{12817}{3}a^{5}+\frac{7678}{3}a^{4}+1315a^{3}-\frac{593}{9}a^{2}-77a-7$, $\frac{22}{3}a^{20}-\frac{22}{9}a^{19}-\frac{1376}{9}a^{18}+\frac{257}{9}a^{17}+\frac{4046}{3}a^{16}-\frac{139}{3}a^{15}-\frac{19565}{3}a^{14}-\frac{2347}{3}a^{13}+18675a^{12}+\frac{45476}{9}a^{11}-31952a^{10}-\frac{119719}{9}a^{9}+\frac{94565}{3}a^{8}+\frac{163439}{9}a^{7}-\frac{143204}{9}a^{6}-\frac{119233}{9}a^{5}+\frac{14666}{9}a^{4}+\frac{30415}{9}a^{3}+\frac{3721}{9}a^{2}-\frac{2015}{9}a-\frac{244}{9}$, $\frac{43}{9}a^{20}-\frac{11}{3}a^{19}-\frac{881}{9}a^{18}+\frac{551}{9}a^{17}+849a^{16}-\frac{3608}{9}a^{15}-\frac{36397}{9}a^{14}+\frac{3784}{3}a^{13}+\frac{103094}{9}a^{12}-\frac{15668}{9}a^{11}-\frac{175948}{9}a^{10}-\frac{371}{9}a^{9}+\frac{58847}{3}a^{8}+\frac{28075}{9}a^{7}-\frac{96571}{9}a^{6}-\frac{34024}{9}a^{5}+\frac{19286}{9}a^{4}+\frac{10139}{9}a^{3}-\frac{788}{9}a^{2}-\frac{590}{9}a-\frac{8}{3}$, $\frac{67}{9}a^{20}-\frac{11}{9}a^{19}-\frac{1403}{9}a^{18}+\frac{26}{9}a^{17}+\frac{12415}{9}a^{16}+182a^{15}-\frac{60083}{9}a^{14}-\frac{17078}{9}a^{13}+\frac{57152}{3}a^{12}+\frac{24857}{3}a^{11}-\frac{96641}{3}a^{10}-\frac{170347}{9}a^{9}+\frac{277370}{9}a^{8}+23880a^{7}-\frac{127280}{9}a^{6}-\frac{147349}{9}a^{5}-\frac{163}{9}a^{4}+\frac{35342}{9}a^{3}+\frac{7850}{9}a^{2}-\frac{1999}{9}a-\frac{530}{9}$, $\frac{13}{9}a^{20}-\frac{2}{9}a^{19}-31a^{18}+\frac{13}{9}a^{17}+\frac{845}{3}a^{16}+\frac{53}{3}a^{15}-\frac{12643}{9}a^{14}-\frac{2171}{9}a^{13}+\frac{37471}{9}a^{12}+\frac{10361}{9}a^{11}-\frac{22307}{3}a^{10}-\frac{8404}{3}a^{9}+\frac{70282}{9}a^{8}+\frac{11416}{3}a^{7}-\frac{13345}{3}a^{6}-\frac{26269}{9}a^{5}+\frac{8107}{9}a^{4}+\frac{8141}{9}a^{3}-\frac{2}{3}a^{2}-\frac{289}{3}a-\frac{25}{3}$, $\frac{17}{9}a^{20}-\frac{1}{3}a^{19}-\frac{359}{9}a^{18}+\frac{5}{3}a^{17}+\frac{3209}{9}a^{16}+\frac{307}{9}a^{15}-\frac{15731}{9}a^{14}-\frac{3655}{9}a^{13}+5078a^{12}+\frac{5536}{3}a^{11}-\frac{79471}{9}a^{10}-\frac{12941}{3}a^{9}+\frac{79961}{9}a^{8}+\frac{50152}{9}a^{7}-\frac{41525}{9}a^{6}-3972a^{5}+\frac{4960}{9}a^{4}+\frac{9533}{9}a^{3}+\frac{967}{9}a^{2}-\frac{752}{9}a-\frac{89}{9}$, $\frac{32}{9}a^{20}-\frac{23}{9}a^{19}-\frac{655}{9}a^{18}+\frac{374}{9}a^{17}+\frac{5674}{9}a^{16}-\frac{779}{3}a^{15}-\frac{26980}{9}a^{14}+\frac{6632}{9}a^{13}+\frac{25399}{3}a^{12}-681a^{11}-14371a^{10}-\frac{10186}{9}a^{9}+\frac{128327}{9}a^{8}+\frac{10316}{3}a^{7}-\frac{22723}{3}a^{6}-3390a^{5}+\frac{11560}{9}a^{4}+\frac{8305}{9}a^{3}+\frac{161}{9}a^{2}-\frac{454}{9}a-\frac{52}{9}$, $\frac{1}{9}a^{20}-\frac{1}{3}a^{19}-2a^{18}+\frac{19}{3}a^{17}+15a^{16}-\frac{151}{3}a^{15}-\frac{553}{9}a^{14}+\frac{1954}{9}a^{13}+153a^{12}-\frac{1654}{3}a^{11}-\frac{2243}{9}a^{10}+\frac{2510}{3}a^{9}+288a^{8}-\frac{6638}{9}a^{7}-\frac{2248}{9}a^{6}+\frac{3098}{9}a^{5}+\frac{439}{3}a^{4}-\frac{539}{9}a^{3}-\frac{274}{9}a^{2}+\frac{58}{9}a+\frac{19}{9}$
|
| |
| Regulator: | \( 169796731730 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{13}\cdot(2\pi)^{4}\cdot 169796731730 \cdot 1}{2\cdot\sqrt{16865213361316368677229831448817302529}}\cr\approx \mathstrut & 0.263944628479659 \end{aligned}\] (assuming GRH)
Galois group
$S_7\wr C_3$ (as 21T159):
| A non-solvable group of order 384072192000 |
| The 1165 conjugacy class representatives for $S_7\wr C_3$ |
| Character table for $S_7\wr C_3$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.12.0.1}{12} }{,}\,{\href{/padicField/2.6.0.1}{6} }{,}\,{\href{/padicField/2.3.0.1}{3} }$ | ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.3.0.1}{3} }$ | $21$ | R | $15{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ | ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.3.0.1}{3} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/padicField/17.3.0.1}{3} }^{2}$ | $15{,}\,{\href{/padicField/19.6.0.1}{6} }$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{3}$ | ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}$ | $15{,}\,{\href{/padicField/37.6.0.1}{6} }$ | R | ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/padicField/47.3.0.1}{3} }$ | $21$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.7.3.14a1.3 | $x^{21} + 18 x^{15} + 12 x^{14} + 108 x^{9} + 144 x^{8} + 48 x^{7} + 216 x^{3} + 432 x^{2} + 288 x + 71$ | $3$ | $7$ | $14$ | $C_{21}$ | not computed |
|
\(41\)
| $\Q_{41}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{41}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 41.2.1.0a1.1 | $x^{2} + 38 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 41.1.2.1a1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 41.3.1.0a1.1 | $x^{3} + x + 35$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 41.3.1.0a1.1 | $x^{3} + x + 35$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 41.3.1.0a1.1 | $x^{3} + x + 35$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 41.6.1.0a1.1 | $x^{6} + 4 x^{4} + 33 x^{3} + 39 x^{2} + 6 x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
|
\(167\)
| $\Q_{167}$ | $x + 162$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{167}$ | $x + 162$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{167}$ | $x + 162$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{167}$ | $x + 162$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{167}$ | $x + 162$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{167}$ | $x + 162$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{167}$ | $x + 162$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 167.1.2.1a1.2 | $x^{2} + 835$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 167.3.1.0a1.1 | $x^{3} + 7 x + 162$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 167.4.1.0a1.1 | $x^{4} + 3 x^{2} + 120 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 167.5.1.0a1.1 | $x^{5} + 3 x + 162$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
|
\(5406197\)
| $\Q_{5406197}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{5406197}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{5406197}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | ||
|
\(671780022444019\)
| $\Q_{671780022444019}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{671780022444019}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |