Properties

Label 21T159
Order \(384072192000\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $159$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,4,2)(3,7)(8,14)(9,10,11,12)(15,20,19,21,18,17), (1,15,8,3,19,14,7,16,13,4,21,10,6,17,12,2,18,11)(5,20,9)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
12:  $A_4$
24:  $A_4\times C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $C_3$

Degree 7: None

Low degree siblings

42T7892 x 2, 42T7893, 42T7894 x 2, 42T7895, 42T7896

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 1,165 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $384072192000=2^{12} \cdot 3^{7} \cdot 5^{3} \cdot 7^{3}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.